Physical Characteristics of CBD Synthesized CdZnS Thin Films

Author(s):  
Ayan Mukherjee ◽  
Partha Mitra

In recent years, ternary cadmium zinc sulfide (CdZnS) alloy compounds have been paid much attention in the fields of opto-electronics, particularly in photovoltaic devices. CdZnS thin films can be prepared by different techniques among which chemical methods have more advantages. Among different chemical method, Chemical Bath Deposition (CBD) is simple, low cost and widely applicable in industrial applications. In this chapter, we have discussed different methods of preparation of CdZnS thin film and their obtained properties. Also, the films are characterized by XRD, TEM, FESEM, EDAX, UV-Vis spectroscopy, etc. The properties of CdZnS gives insight of the properties of ternary thin film semiconductor and it will help to design semiconductor with tuneable properties for future applications in optoelectronic sector.

2018 ◽  
Vol 666 ◽  
pp. 28-33 ◽  
Author(s):  
Tizazu Abza ◽  
Francis Kofi Ampong ◽  
Fekadu Gashaw Hone ◽  
Robert Kwame Nkum ◽  
Francis Boakye

Author(s):  
Dinesh Pathak ◽  
Sanjay Kumar ◽  
Sonali Andotra ◽  
Jibin Thomas ◽  
Navneet Kaur ◽  
...  

In this study, we have investigated new tailored organic semiconductors materials for the optoelectronic application, such as organic solar cells. The carbon-based organic semiconductor material has promising advantages in organic thin-film form. Moreover, due to its low cost, organic thin-films are suitable and cheaper than inorganic thin-film. The band gap of organic semiconductors materials can be tuned and mostly lies between 2.0eV to 4eV and the optical absorption edge of organic semiconductors typically lies in between 1.7eV to 3eV. They can be easily tailored by modifying the carbon chain and legends and looks promising for engineering the band gap to harness solar spectrum. In this work, with new tailored organic semiconductors the solution route is explored which is low cost processing method. (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3,4-dimethoxyaniline thin-films are processed by spin coating method with changing concentration such as 0.05 wt% and 0.08 wt%. Thin films of Organic semiconductors were prepared on glass substrate and annealed at 55°C. The structural and optical behaviour of (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3,4-dimethoxyaniline organic semiconductors thin films is studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and UV-Visible Spectroscopy technique. The XRD data of synthesized sample suggests the Nano crystallinity of the Organic layers. The SEM micrographs shows the dense packing when we increase the wt% 0.05 to 0.08. Analysis of the optical absorption measurements found that the engineered band gap of synthesized thin films are 2.18eV, 2.35eV, 2.36eV, 2.52eV and 2.65eV which suggest suitability for applications of Optoelectronic devices such as solar cell. Such light weight, eco-friendly and disposable new carbon based materials seems to have potential to replace other traditional hazardous heavy materials for future eco-friendly flat fast electronics. Keywords: Thin-film, solar cell, tailored organic semiconductors, XRD, SEM, UV-Vis spectroscopy.


2000 ◽  
Vol 10 (11) ◽  
pp. 2439-2441 ◽  
Author(s):  
David S. Boyle ◽  
Odile Robbe ◽  
Douglas P. Halliday ◽  
Markus R. Heinrich ◽  
Alexander Bayer ◽  
...  

2001 ◽  
Vol 15 (17n19) ◽  
pp. 667-670 ◽  
Author(s):  
Y. RODRÍGUEZ-LAZCANO ◽  
M. T. S. NAIR ◽  
P. K. NAIR

The possibility of generating ternary compounds through annealing thin film stacks of binary composition has been demonstrated before. In this work we report a method to produce large area coating of ternary compounds through a reaction in solid state between thin films of Sb2S3 and CuS. Thin films of Sb2S3 -CuS were deposited on glass substrates in the sequence of Sb2S3 followed by CuS (on Sb2S3 ) using chemical bath deposition method. The multilayer stack, thus produced, of approximately 0.5 μm in thickness, where annealed under nitrogen and argon atmospheres at different temperatures to produce films of ternary composition, CuxSbySz . An optical band gap of ~1.5 eV was observed in these films, suggesting that the thin films of ternary composition formed in this way are suitable for use as absorber materials in photovoltaic devices. The results on the analyses of structural, electrical and optical properties of films formed with different combinations of thickness in the multilayers will be discussed in the paper.


Author(s):  
Jianwen Liu ◽  
Wangping Wu ◽  
Xiang Wang

Developing novel hydrogen evolution reaction (HER) catalysts with high activity, high stability and low cost is of great importance for the applications of hydrogen energy. In this work, iridium-nickel (Ir-Ni) thin films were electrodeposited on a copper foam as electrocatalyst for HER, and electrodeposition mechanism of Ir-Ni film was studied. The morphology and chemical composition of thin films were determined by scanning electron microscopy and energy-dispersive spectroscopy, respectively. The electrocatalytic performances of the films were estimated by linear sweep voltammograms, electrochemical impedance spectroscopy and cyclic voltammetry. The results show that Ir-Ni thin films were attached to the substrate of porous structure and hollow topography. The deposition of Ni was preferable in the electrolyte without the addition of additives, and Ir-Ni thin film was alloyed, resulting in high deposition rate for Ir42Ni58 thin film, and subsequently an increase of Ir content in the thin films of Ir80Ni20 and Ir88Ni12. Ir-Ni thin films with Tafel slopes of 40-49 mV·dec-1 exhibited highly efficient electrocatalytic activity for HER. The electrocatalytic activity of Ir-Ni thin films showed a loading dependence. As the solution temperature raised from 20 oC to 60 oC, the hydrogen evolution performance of Ir-Ni thin films improved. The apparent activation energy value of Ir88Ni12 film was 7.1 kJ·mol-1. Long-term hydrogen evolution tests exhibited excellent electrocatalystic stability in alkaline solution.


Sign in / Sign up

Export Citation Format

Share Document