Emergent Research on Polymeric and Composite Materials - Advances in Chemical and Materials Engineering
Latest Publications


TOTAL DOCUMENTS

12
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

Published By IGI Global

9781522530237, 9781522530244

Author(s):  
Sai S. Sagiri ◽  
Suraj K. Nayak ◽  
S. Lakshmi ◽  
Kunal Pal

In recent years, the use of biopolymeric nanoparticles as vehicles for drug delivery has increased exponentially. In the present study, chitosan and gelatin nanoparticles were prepared by ionic gelation and desolvation methods, respectively. Salicylic acid was used as the model drug. The nanoparticles were characterized using SEM, XRD analysis and FTIR spectrophotometric studies. In vitro drug release experiments were carried out to understand the mechanism of drug release. SEM micrographs showed the formation of spherical nanoparticles. XRD studies indicated a higher crystalline nature of the chitosan nanoparticles as compared to the gelatin nanoparticles. FTIR studies indicated the presence of salicylic acid within the drug- loaded nanoparticles. Drug release studies indicated that the developed nanoparticles may be used as carriers for various bioactive agents.


Author(s):  
Roopa S. ◽  
Siddaramaiah

The effect of cenosphere content on the performances of polyurethane/polystyrene (PU/PS, 90/10) interpenetrating polymer network (IPN) based green composites have been studied. The PU/PS IPNs have been prepared using castor oil, toluene diisocyanate and styrene. IPN/cenosphere composites have been prepared with different weight fractions viz., 0, 5, 10, 20 and 30 wt % of cenosphere. The prepared IPN composites have been characterized by physico – mechanical, chemical and thermal behavior. The tensile strength of unfilled IPN was 1.79 MPa and a significant improvement in tensile strength (34%) was noticed for 10% cenosphere loaded IPN composite. The swelling behavior of the composites has been studied in different organic solvents. Thermal characteristics of the composites have been measured using differential scanning calorimeter, thermogravimetric analysis and dynamic mechanical analysis (DMA). A slight improvement in thermal stability was noticed for filler loaded specimens. Morphological features of cryo-fractured IPN/cenosphere green composites have been analyzed using SEM.


Author(s):  
Somashekarappa H ◽  
Manjunath Alabur

This chapter discusses about the synthesis and characterization of polymers, polymer blends, polymer composites, and polymer nanocomposites. Electrically conductive blends polyaniline dodecyl benzene sulphonic acid (Pani:DBSA)/Styrene Butadiene Styrene (SBS) block copolymer have been prepared by melt mixing and using in situ polymerization method. The microstructural parameters were computed using wide angle X-ray scattering (WAXS) and Small angle X-ray scattering (SAXS). Bimodal distribution method has been studied for SBS, DCH32 cotton fiber and Pure Mysore multi-voltine silk (PMS) samples using Line profile analysis.


Author(s):  
Noureddine Ramdani ◽  
Mehdi Azibi

This chapter reviews the various properties enhancement of polymer/ceramic nanocomposites. Ceramics nanofillers have attracted both academic and industrial interest as they can produce a significant improvement in the properties of polymers even at lower filler loadings. Recently, numerous kinds of polymeric matrices reinforced with ceramic nanoparticles have been reported. The surface-modification of ceramic nanoparticles was reported to provide extra-improvements in the thermal and mechanical properties of these materials. In addition, the type of the used ceramic nanofillers agent determines the final properties of the nanocomposites. Herein, the various effects of adding ceramic nanoparticles on the thermal, electrical, optical, and mechanical properties of polymer/ceramic nanocomposites as well as the reinforcing mechanism are discussed in general along with detailed examples drawn from the scientific literature.


Author(s):  
Kaushik Kumar ◽  
J. Paulo Davim

The usage of composite material has been increasing day by day over the years due to the excellent properties being offered by them such as lower volume-to-weight ratio, improved toughness, recyclable, environment friendly and also due to their short cycle productivity, easiness in fabrication, long lasting life span etc. This work presents study of mechanical and tribological behaviour of ABS polymer matrix filled with micron-sized inorganic and Natural / Green fillers. The main purpose behind this work is to compare the performance of composites with different class of fillers. The experimental results unveil that the composite with inorganic fillers perform better than with natural based fillers.


Author(s):  
Ayan Mukherjee ◽  
Partha Mitra

In recent years, ternary cadmium zinc sulfide (CdZnS) alloy compounds have been paid much attention in the fields of opto-electronics, particularly in photovoltaic devices. CdZnS thin films can be prepared by different techniques among which chemical methods have more advantages. Among different chemical method, Chemical Bath Deposition (CBD) is simple, low cost and widely applicable in industrial applications. In this chapter, we have discussed different methods of preparation of CdZnS thin film and their obtained properties. Also, the films are characterized by XRD, TEM, FESEM, EDAX, UV-Vis spectroscopy, etc. The properties of CdZnS gives insight of the properties of ternary thin film semiconductor and it will help to design semiconductor with tuneable properties for future applications in optoelectronic sector.


Author(s):  
Nisha Kumari ◽  
Kaushik Kumar

Composites based materials are becoming more important in the field of aerospace, automobile, medicine, sports, energy etc. The principal quality of composite materials is their higher strength, firmness, resistant to corrosion and comparatively low weight when compared to the metals. The main aim of the work is to replace the presently used orthotic calipers with the proposed polymeric based composites as in last few years composites have generated broad research in engineering and research field due to its smaller density, low cost, recyclable, environment friendly and capable of being decomposed. Here, the authors have proposed two polymeric based composites (thermoplast and thermoset) as an alternative material of construction and hence their various properties were investigated. The authors after performing the experiment unveil that the strength and firmness of thermoset based composites (Epoxy + Carbon) is higher and have lower weight- to- volume ratio than that of the presently used (Aluminum based) orthotic calipers.


Author(s):  
Diego Mauricio Sanchez Osorno ◽  
Cristina Castro

Cellulose polysaccharide is the most important component in plants with a fascinating structure and properties. Despite the origin, cellulose is a linear homopolymer of ß-(1-4)-linked D-glucopyranose units varying mainly on purity, degree of polymerization (DP) and crystallinity index. This linear stiff-chain homopolymer is characterized by its hydrophilicity, chirality, biodegradability, broad chemical modifying capacity, and its formation of versatile semicrystalline fiber morphologies. This chapter aims to show the most important applications of cellulose in food, presenting other cellulose derivatives as methylcellulose, carboxymethyl cellulose, and novel cellulose forms as bacterial cellulose. New frontiers, including environmentally friendly cellulose fiber technologies for food packaging, bacterial cellulose in foodstuff and other applications as thickening agent, stabilizing agent, gelling agent, suspending agent were highlighted with future aims, strategies, and perspectives of cellulose research and its applications.


Author(s):  
Suprio R. Paul ◽  
Suraj K. Nayak ◽  
Arfat Anis ◽  
Kunal Pal

The incidence of chronic obstructive pulmonary disease (COPD) has increased many folds in the last couple of decades. This can be explained by the increased pollution levels and drastic changes in the lifestyle of the people. Taking a note of this, in this review, a conscious attempt was made to understand the physiological changes in the respiratory tract in a COPD patient. Nanoparticulate formulations play an extensive role in the current-day treatment regime of COPD patients. Hence, different methods for developing nanoparticulate formulations for the treatment of COPD are discussed in details.


Author(s):  
Madhu B. J.

Magnesium Oxide (MgO) nanoparticles have been synthesized by solution combustion technique using stoichiometric composition of magnesium nitrate as oxidizer and urea as fuel. Structure of the MgO was studied with the X-ray diffraction (XRD) using Cu-Ka radiation. MgO/polyvinylpyrrolidone (PVP) nanocomposites have been prepared by blending MgO nanoparticles with the polyvinylpyrrolidone. MgO/PVP nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. Frequency dependence of dielectric constant (e'), dielectric loss tangent (tand) and AC conductivity studies have been undertaken on the MgO/PVP nanocomposites in the frequency range 50Hz-5MHz at room temperature. Dielectric properties such as dielectric constant (e') and dielectric loss tangent (tand) are found to decrease with the increase in the frequency. Further, AC conductivity of MgO/PVP nanocomposites was found to increase with an increase in the frequency. Observed variation in the a. c. conductivity with the frequency has been understood on the basis of electron hopping model.


Sign in / Sign up

Export Citation Format

Share Document