Sustainable Land Use and Watershed Management in Response to Climate Change Impacts

Author(s):  
Nguyen Kim Loi ◽  
Nguyen Thi Huyen ◽  
Le Hoang Tu ◽  
Vo Ngoc Quynh Tram ◽  
Nguyen Duy Liem ◽  
...  

The Srepok river basin (28,600km2) is located in the Central Highlands of Vietnam. There are many critical issues for soil and water resource management in the basin. Therefore, to make suitable adaptation plans, decision makers need to understand the extent of the potential impact of both climate change and human activity on local soil and water resources. The objective of this chapter was to investigate changes in stream flow, sediment load, and hydrological processes resulting from land use change and climatic variation. Plausible scenarios of land use change developed in a GIS environment based on current conditions, information from the area, and climate change scenarios were built on outputs of GCMs from the SEA-START. These changes were then inputted into SWAT model to project future hydrological variables. Results demonstrated that stream flow was predominant, followed by evapotranspiration. Groundwater was more predominant than surface water. This has been one of the best outstanding advantages in the Srepok watershed.

Author(s):  
Nguyen Kim Loi ◽  
Nguyen Thi Huyen ◽  
Le Hoang Tu ◽  
Vo Ngoc Quynh Tram ◽  
Nguyen Duy Liem ◽  
...  

The Srepok river basin (28,600km2) is located in the Central Highlands of Vietnam. There are many critical issues for soil and water resource management in the basin. Therefore, to make suitable adaptation plans, decision makers need to understand the extent of the potential impact of both climate change and human activity on local soil and water resources. The objective of this chapter was to investigate changes in stream flow, sediment load, and hydrological processes resulting from land use change and climatic variation. Plausible scenarios of land use change developed in a GIS environment based on current conditions, information from the area, and climate change scenarios were built on outputs of GCMs from the SEA-START. These changes were then inputted into SWAT model to project future hydrological variables. Results demonstrated that stream flow was predominant, followed by evapotranspiration. Groundwater was more predominant than surface water. This has been one of the best outstanding advantages in the Srepok watershed.


2019 ◽  
Vol 2 (2) ◽  
pp. 125-131
Author(s):  
Loi Thi Pham ◽  
Khoi Nguyen Dao

Assessing water resources under the influence of environmental change have gained attentions of scientists. The objective of this study was to analyze the impacts of land use change and climate change on water resources in terms quantity and quality in the 3S basin in the period 1981–2008 by using hydrological modeling (SWAT model). The results showed that streamflow and water quality (TSS, T-N, and T-P) tend to increase under individual and combined effects of climate change and land use change. In addition, the impact of land use change on the flow was smaller than the climate change impact. However, water balance components and water quality were equally affected by two factors of climate change and land use change. In general, the results of this study could serve as a reference for water resource management and planning in the river basin.


2015 ◽  
Vol 737 ◽  
pp. 728-731 ◽  
Author(s):  
Yuan Yuan Han ◽  
Tao Cai

In this study, Soil and Water Assessment Tool (SWAT) model was used to simulate land-use change effects on water quantity in the upper Huaihe river basin above the Xixian hydrological controlling station with a catchment area of 10,190 km2 by the use of three-phase (1980s、1990s、2000s) land-use maps, soil type map (1:200000), 1980 to 2008 daily time series of rainfall from the upper Huaihe river basin. On the basis of the simulated time series of daily runoff, land-use change effects on spatio-temporal change patterns of runoff coefficients and runoff modules were investigated. The results revealed that under the same condition of soil texture and terrain slope the advantage for runoff generation and the sensitivity of rainfall-runoff relationship to rainfall descended by farmland, paddy field, woodland.The outputs could provide important references for soil and water conservation and river health protection in the upper stream of Huaihe river.


2018 ◽  
Vol 246 ◽  
pp. 02001
Author(s):  
Mingzhi Yang ◽  
Weihua Xiao ◽  
Yong Zhao ◽  
Ya Huang ◽  
Baoqi Li ◽  
...  

The intense climate changes and human activities have a great impact on the variation of the runoff of the coastal area of South China. In this work, the Soil and Water Assessment Tool (SWAT) is used to quantify the impact of land use and climate change of the Nanliujiang catchment on the runoff by setting 4 scenarios of land-use and climate change. The results show the runoff of the simulated and measured values had a similar trend. The value of relevant coefficient is above 0.8, and the value of Nash-Sutcliffe efficiency coefficient is about 0.8, which indicate that the SWAT model is fit for the study area. The annual average runoff depth during the period from 1995 to 2013 has increased by 53.5mm, of which the land use change resulted in 13.0mm increase on the annual average runoff depth while the climate change resulted in 40.9mm increase on the annual average runoff depth, therefore, the climate change has greater effect then the land use change. This work will delineate some helpful information for the water resources management as well as ecological protection in the coastal area of South China.


2015 ◽  
Vol 737 ◽  
pp. 762-765 ◽  
Author(s):  
Yuan Yuan Han ◽  
Tao Cai

To investigate the impacts of land-use patterns on the sediment yield characteristics in the upper Huaihe River, Xixian hydrological controlling station was selected as the case study site. Soil and Water Assessment Tool (SWAT) model was used to simulate land-use change effects on sediment yield by the use of three-phase (1980s, 1990s and 2000s) land-use maps, soil type map (1:200000) and 1987 to 2008 daily time series of rainfall from the upper Huaihe River basin. On the basis of the simulated time series of daily sediment concentration, land-use change effects on spatio-temporal change patterns of soil erosion modulus. The results revealed that under the same condition of soil texture and terrain slope the advantage for sediment yield was descended by woodland, paddy field and farmland. The outputs of the paper could provide references for soil and water conservation and river health protection in the upper stream of Huaihe River.


2020 ◽  
Vol 12 (16) ◽  
pp. 6423
Author(s):  
Lanhua Luo ◽  
Qing Zhou ◽  
Hong S. He ◽  
Liangxia Duan ◽  
Gaoling Zhang ◽  
...  

Quantitative assessment of the impact of land use and climate change on hydrological processes is of great importance to water resources planning and management. The main objective of this study was to quantitatively assess the response of runoff to land use and climate change in the Zhengshui River Basin of Southern China, a heavily used agricultural basin. The Soil and Water Assessment Tool (SWAT) was used to simulate the river runoff for the Zhengshui River Basin. Specifically, a soil database was constructed based on field work and laboratory experiments as input data for the SWAT model. Following SWAT calibration, simulated results were compared with observed runoff data for the period 2006 to 2013. The Nash-Sutcliffe Efficiency Coefficient (NSE) and the correlation coefficient (R2) for the comparisons were greater than 0.80, indicating close agreement. The calibrated models were applied to simulate monthly runoff in 1990 and 2010 for four scenarios with different land use and climate conditions. Climate change played a dominant role affecting runoff of this basin, with climate change decreasing simulated runoff by −100.22% in 2010 compared to that of 1990, land use change increasing runoff in this basin by 0.20% and the combination of climate change and land use change decreasing runoff by 60.8m3/s. The decrease of forestland area and the corresponding increase of developed land and cultivated land area led to the small increase in runoff associated with land use change. The influence of precipitation on runoff was greater than temperature. The soil database used to model runoff with the SWAT model for the basin was constructed using a combination of field investigation and laboratory experiments, and simulations of runoff based on that new soil database more closely matched observations of runoff than simulations based on the generic Harmonized World Soil Database (HWSD). This study may provide an important reference to guide management decisions for this and similar watersheds.


2020 ◽  
Vol 14 (2) ◽  
pp. 154-161
Author(s):  
Diah Ainunisa ◽  
◽  
Gusfan Halik ◽  
Wiwik Yunarni Widiarti ◽  
◽  
...  

Population growth is one of the causes of land-use change that can increase runoff. Tanggul watershed is one of the watersheds which often overflows during the rainy season. This study purpose to analyze the effect of land-use changes on runoff in Tanggul watershed using SWAT (Soil and Water Assessment Tool) model. To make sure the performance of SWAT model calibration and classified by the value of NSE and R2. The result of calibration included in a good category and validation included in a very good category. This study was modeling forest land-use change in 2004-2017 to determine the effect of land-use change on runoff. The result in this model of forest land-use change can increase runoff.


2021 ◽  
Author(s):  
Karina Winkler ◽  
Richard Fuchs ◽  
Mark Rounsevell ◽  
Martin Herold

<p>Land use change is a major contributor to greenhouse gas emissions and biodiversity loss and, hence, a key topic for current sustainability debates and climate change mitigation. To understand its impacts, accurate data of global land use change and an assessment of its extent, dynamics, causes and interrelations are crucial. However, although numerous observational data is publicly available (e.g. from remote sensing), the processes and drivers of land use change are not yet fully understood. In particular, current global-scale land change assessments still lack either temporal consistency, spatial explicitness or thematic detail. <br>Here, we analyse the patterns of global land use change and its underlying drivers based on our novel high-resolution (~1x1 km) dataset of global land use/cover (LULC) change from 1960-2019, HILDA+ (Historic Land Dynamics Assessment+). The data harmonises multiple Earth Observation products and FAO land use statistics. It covers all transitions between six major LULC categories (urban areas, cropland, pasture/rangeland, forest, unmanaged grass-/shrubland and no/sparse vegetation).<br>On this basis, we show (1) a classification of global LULC transitions into major processes of land use change, (2) a quantification of their spatiotemporal patterns and (3) an identification of their major socioeconomic and environmental drivers across the globe. By using temporal cross-correlation, we study the influence of selected drivers on processes such as agricultural land abandonment, deforestation, forest degradation or urbanisation.<br>With this, we are able to map the patterns and drivers of global land use change at unprecedented resolution and compare them for different world regions. Giving new data-driven and quantitative insights into a largely untouched field, we identify tele-coupled globalisation patterns and climate change as important influencing factors for land use dynamics. Learning from the recent past, understanding how socio-economic and environmental factors affect the way humans use the land surface is essential for estimating future impacts of land use change and implementing measures of climate mitigation and sustainable land use policies.</p>


2016 ◽  
Vol 48 (4) ◽  
pp. 1143-1155 ◽  
Author(s):  
Hero Marhaento ◽  
Martijn J. Booij ◽  
Arjen Y. Hoekstra

Changes in the stream flow of the Samin catchment (277.9 km2) in Java, Indonesia, have been attributed to land use change and climate change. Hydroclimatic data covering the period 1990–2013 and land use data acquired from Landsat satellite imageries for the years 1994 and 2013 were analysed. A quantitative measure is developed to attribute stream flow changes to land use and climate changes based on the changes in the proportion of excess water relative to changes in the proportion of excess energy. The results show that 72% of the increase in stream flow might be attributed to land use change. The results are validated by a land use change analysis and two statistical trend analyses namely the Mann-Kendall trend analysis and Sen's slope estimator for mean annual discharge, rainfall and potential evapotranspiration. The results of the statistical trend analysis are in the same direction as the results of the attribution analysis, where climate change was relatively minor compared to significant land uses change due to deforestation during the period 1994–2013. We conclude that changes in stream flow can be mainly attributed to land use change rather than climate change for the study catchment.


Author(s):  
Wenting Li ◽  
Xiaoli Yang ◽  
Liliang Ren ◽  
Qianguo Lin ◽  
Xiong Zhou ◽  
...  

Abstract The response of blue and green water to climate and land-use change in the Ganjiang River Basin (GRB) is evaluated, via the SWAT model that combines three scenarios (the land-use/land-cover (LULC), climate change, and integrated climate and LULC change scenarios) in the 2040s (2031–2050) and 2060s (2051–2070). The results indicate that, for the GRB, cropland, woodland, and grassland show a decreasing trend, while build-up and water areas show an increasing trend in terms of future land-use change. The climatic conditions projected using NORESM1-M model data under the RCP4.5 and RCP8.5 scenarios suggest, respectively, increases in precipitation (31.17 and 27.24 mm), maximum temperature (2.25 and 2.69 °C), and minimum temperature (1.96 and 2.58 °C). Under climate change conditions, blue water is estimated to decrease by up to 16.89 and 21.4 mm under RCP4.5 and RCP8.5, while green water is estimated to increase up to 19.14 and 20.22 mm, respectively. Under the LULC changes, blue water is projected to increase by up to 5.50 and 7.57 mm, while green water shows decreases of 4.05 and 7.80 mm for the LULC2035 and LULC2055 scenarios, respectively. Under the four combined LULC and climate change conditions (RCP4.5_2040s, RCP4.5_2060s, RCP8.5_2040s, and RCP8.5_2060s), blue water tends to decrease by 0.67, 7.47, 7.28, and 9.99 mm, while green water increases by 19.24, 20.8, 13.87, and 22.30 mm. The influence of climate variation on blue and green water resources is comparatively higher than that of the integrated impacts of climate and land-use changes. The results of this study offer a scientific reference for the water resources management and planning department responsible for scheduling water resource management plan in the GRB.


Sign in / Sign up

Export Citation Format

Share Document