Application of Persulfate in Textile Wastewater Treatment

Author(s):  
Fagbenro Oluwakemi Kehinde ◽  
Salem S. Abu Amr ◽  
Hamidi Abdul Aziz

As textile and dyeing industries increase, pollution due to effluent discharges from the same industries also increase and become of great concern to a healthy environment. In an attempt to understand the generation and treatment of textile wastewater, this chapter discusses the processes from which textiles are made, items of importance that are used in the production process which may account for the characteristics of the wastewater and persulfate, applied in the treatment of textile wastewater. Although these wastewaters are generally characterized by color, fluctuating pH, heat, salts, suspended solids (SS), the presence of metal ions, biological oxidation demand (BOD), and chemical oxygen demand (COD), color is the most obvious. The presence of color in the effluents from textile dyeing and finishing is due to the inefficient dyeing processes, resulting in unfixed forms of the dyestuff. To achieve the primary objective of obtaining a clean environment, there is a need for continuous monitoring of textile wastewater discharges, of which major concern is color.

2018 ◽  
Vol 20 (3) ◽  
pp. 449-457

<p>This study explored the best-operating conditions for a novel electrocoagulation (EC) reactor with the rotating anode for textile wastewater treatment. The influence of operating parameters like inter-electrode distance (IED), current density (CD), temperature, pH, operating time (RT), and rotation speed on the removal efficiency of the contaminant was studied. A comparative study was done using conventional model with static electrodes in two phases under same textile wastewater The findings revealed that the optimal conditions for textile wastewater treatment were attained at RT = 10 min, CD = 4 mA/cm2, rotation speed = 150 rpm, temperature = 25oC, IED = 1cm, and pH = 4.57. The removal efficiencies of colour, biological oxygen demand (BOD), turbidity, chemical oxygen demand (COD), and total suspended solid (TSS) were 98.50%, 95.55%, 96%, 98% and 97.10% within the first 10 min of the reaction. The results of the experiment reveal that the newly designed reactor incorporated with cathode rings and rotated anode impellers provide a superior treatment efficiency within a short reaction time. The novel EC reactor with a rotating anode significantly enhanced textile wastewater treatment compared to the conventional model. The values of adsorption and passivation resistance validated the pollutants removal rate.</p>


RSC Advances ◽  
2016 ◽  
Vol 6 (93) ◽  
pp. 90631-90645 ◽  
Author(s):  
Márcia M. F. F. Salim ◽  
Aline Novack ◽  
Petrick A. Soares ◽  
Ângela Medeiros ◽  
Miguel A. Granato ◽  
...  

A photochemical UVC/H2O2 oxidation system was applied for the decolourisation of two real textile wastewaters collected after biological oxidation from two different textile wastewater treatment plants.


2017 ◽  
Vol 76 (9) ◽  
pp. 2515-2525 ◽  
Author(s):  
Edison GilPavas ◽  
Paula Arbeláez-Castaño ◽  
José Medina ◽  
Diego A. Acosta

Abstract A combined electrocoagulation (EC) and electrochemical oxidation (EO) industrial textile wastewater treatment potential is evaluated in this work. A fractional factorial design of experiment showed that EC current density, followed by pH, were the most significant factors. Conductivity and number of electrooxidation cells did not affect chemical oxygen demand degradation (DCOD). Aluminum and iron anodes performed similarly as sacrificial anodes. Current density, pH and conductivity were chosen for a Box–Behnken design of experiment to determine optimal conditions to achieve a high DCOD minimizing operating cost (OC). The optimum to achieve a 70% DCOD with an OC of USD 1.47/m3 was: pH of 4, a conductivity of 3.7 mS/cm and a current density of 4.1 mA/cm2. This study also shows the applicability of a combined EC/EO treatment process of a real complex industrial wastewater.


1994 ◽  
Vol 30 (3) ◽  
pp. 255-263 ◽  
Author(s):  
Frank Gähr ◽  
Frank Hermanutz ◽  
Wilhelm Oppermann

The German textile industry is challenged by the introduction of new governmental regulations in the field of textile wastewater treatment This causes a large increase of water costs in comparison with other European countries. Many economic experts even see Germany seriously endangered as a place of textile production, however there are also opportunities with the development of high performance cleaning technologies as a result of these governmental measures. In particular the required separate treatment of selected wastewaters of different fmishing processes bas some good perspectives since specialized wastewater techniques can be applied efficiently. For instance the separation of unfixed reactive dyes is the ideal basis for ozone oxidation. Ozonation being a sludge-free method to decompose dyestuff, fmishing products, and other organic materials is of increasing importance because of the limited space for disposal of sludges. Other advantages of ozone treatment are the improvement of biodegradability, reduction of aromatic and halogenated organic compounds and also a significant decrease of chemical oxygen demand. The ozonation of textile wastewaters in combination with inexpensive biological processes has the potential to play a major role in the future. Partial replacement of coagulation/precipitation can be expected.


2014 ◽  
Vol 252 ◽  
pp. 120-130 ◽  
Author(s):  
Diego R. Manenti ◽  
Aparecido N. Módenes ◽  
Petrick A. Soares ◽  
Fernando R. Espinoza-Quiñones ◽  
Rui A.R. Boaventura ◽  
...  

2018 ◽  
Vol 14 (2) ◽  
pp. 257-262
Author(s):  
Mohd Fahmi Muhammad Mubarak ◽  
Muhamad Hanif Md Nor ◽  
Muhamad Firdaus Sabaruddin ◽  
Hui Han Bay ◽  
Chi Kim Lim ◽  
...  

One of the most abundant dyes that are used extensively in the textile manufacturing are azo dyes, which may endanger water bodies since incomplete breakdown of dyes may cause mutagenic and carcinogenic compounds to persist. In this study, BAC-ZS, bacterial mixed culture consisting of three acclimatised decolourising bacteria were grown as biofilm onto macrocomposites. Different time duration between 3 to 14 days of biofilm development was studied to determine the density of biofilm attached onto macrocomposites. Sequencing batch reactors (SBRs) were set up for raw textile wastewater treatment to investigate the effectiveness of the treatment with and without the presence of biofilm (control). The treatment was performed under facultative anaerobic-aerobic condition for 20 days continuously with 48-hour of hydraulic retention time (HRT) cycle (consisting both conditions). Colour and chemical oxygen demand (COD) were monitored throughout the treatment process. Results showed that the colour and COD removal by the developed biofilm were 78.6 ± 1.4% and 76.4 ± 1.12% from initial values of 1400 ADMI and 660 mg/L, respectively while only 47.9 ± 0.9% colour and 38.0 ± 1.5% COD removal for the control. In conclusion, the biofilm of BAC-ZS mixed culture coated onto macrocomposites showed potential applications in the treatment of raw textile wastewater.


2016 ◽  
Vol 75 (3) ◽  
pp. 629-642 ◽  
Author(s):  
Feriel Bouatay ◽  
Nesrine Eljebsi ◽  
Sonia Dridi-Dhaouadi ◽  
Farouk Mhenni

The Vicia faba membranes are an abundant and a low cost product. In the present research paper, the extracted Vicia faba mucilage was tested as an eco-friendly flocculant for textile wastewater treatment. Its performance as flocculant, in decolorization, chemical oxygen demand (COD) removal and the concentration of total suspended solids was checked. The natural extracted product was characterized using infrared spectroscopy. The total sugars were determined in the extracted product. The effect study, followed by an optimization and modeling analysis, of some experimental parameters on the coagulation–flocculation performance, using Vicia faba mucilage (as a flocculant), combined with aluminum sulfate (as a coagulant), showed that the best conditions for the flocculation process were pH of the effluent about 7, flocculant dose about 6.75 mg/L, flocculation mixing time about 3 min and flocculation mixing speed about 30 rpm, leading to a decolorization equal to 92.32%, COD removal of about 97.52% and total suspended solids of about 15.3 mg/L. A comparison study between the flocculation performance of commercial reagents and the bio-agent showed that the natural product presented a good flocculation performance.


2021 ◽  
Vol 270 ◽  
pp. 118819
Author(s):  
Nur Azizah Johari ◽  
Norhaniza Yusof ◽  
Woei Jye Lau ◽  
Norfadhilatuladha Abdullah ◽  
Wan Norharyati Wan Salleh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document