A Bio-Inspired, Distributed Control Approach to the Design of Autonomous Cooperative Behaviors in Multiple Mobile Robot Systems

Author(s):  
Gen'ichi Yasuda

This chapter deals with the design and implementation of bio-inspired control architectures for intelligent multiple mobile robot systems. Focusing on building control systems, this chapter presents a non-centralized, behavior-based methodology for autonomous cooperative control, inspired by the adaptive and self-organizing capabilities of biological systems, which can generate robust and complex behaviors through limited local interactions. With autonomous behavior modules for discrete event distributed control, a modular, Petri net-based behavioral control software has been implemented in accordance with a hierarchical distributed hardware structure. The behavior modules with respective pre-conditions and post-conditions can be dynamically connected in response to status events from action control modules at the lower level to achieve the specified overall task. The approach involving planning, control, and reactivity can integrate high-level command input with the behavior modules through the distributed autonomous control architecture.

Author(s):  
Gen'ichi Yasuda

This chapter deals with the design and implementation of bio-inspired control architectures for intelligent multiple mobile robot systems. Focusing on building control systems, this chapter presents a non-centralized, behavior-based methodology for autonomous cooperative control, inspired by the adaptive and self-organizing capabilities of biological systems, which can generate robust and complex behaviors through limited local interactions. With autonomous behavior modules for discrete event distributed control, a modular, Petri net based behavioral control software has been implemented in accordance with a hierarchical distributed hardware structure. The behavior modules with respective pre-conditions and post-conditions can be dynamically connected in response to status events from action control modules at the lower level to achieve the specified overall task. The approach involving planning, control and reactivity can integrate high-level command input with the behavior modules through the distributed autonomous control architecture.


2018 ◽  
Vol 15 (6) ◽  
pp. 172988141881263 ◽  
Author(s):  
Paul Quillen ◽  
Kamesh Subbarao

This article puts forth a framework using model-based techniques for path planning and guidance for an autonomous mobile robot in a constrained environment. The path plan is synthesized using a numerical navigation function algorithm that will form its potential contour levels based on the “minimum control effort.” Then, an improved nonlinear model predictive control approach is employed to generate high-level guidance commands for the mobile robot to track a trajectory fitted along the planned path leading to the goal. A backstepping-like nonlinear guidance law is also implemented for comparison with the NMPC formulation. Finally, the performance of the resulting framework using both nonlinear guidance techniques is verified in simulation where the environment is constrained by the presence of static obstacles.


2019 ◽  
Vol 9 (5) ◽  
pp. 924 ◽  
Author(s):  
Yahui Gan ◽  
Jinjun Duan ◽  
Ming Chen ◽  
Xianzhong Dai

In this paper, the trajectory planning and position/force coordination control of multi-robot systems during the welding process are discussed. Trajectory planning is the basis of the position/ force cooperative control, an object-oriented hierarchical planning control strategy is adopted firstly, which has the ability to solve the problem of complex coordinate transformation, welding process requirement and constraints, etc. Furthermore, a new symmetrical internal and external adaptive variable impedance control is proposed for position/force tracking of multi-robot cooperative manipulators. Based on this control approach, the multi-robot cooperative manipulator is able to track a dynamic desired force and compensate for the unknown trajectory deviations, which result from external disturbances and calibration errors. In the end, the developed control scheme is experimentally tested on a multi-robot setup which is composed of three ESTUN industrial manipulators by welding a pipe-contact-pipe object. The simulations and experimental results are strongly proved that the proposed approach can finish the welding task smoothly and achieve a good position/force tracking performance.


2019 ◽  
pp. 944-966
Author(s):  
Gen'ichi Yasuda

This chapter describes a method for designing decentralized simulation and control architecture for multiple robot systems based on the discrete event net models. Extended Petri nets are adopted as an effective tool to describe, design, and control cooperative behavior of multiple robots based on asynchronous, concurrent processes. By hierarchical decomposition of the net model of the overall system, global and local Petri net models are assigned to the upper level and the lower level controllers, respectively. For the lower level control, individual net models of robots are executed on separate local controllers. The unified net representation for cooperative control is also proposed. Overall control software is implemented and executed on a general hierarchical and distributed control architecture corresponding to the hardware structure of multiple robot systems.


Author(s):  
Gen'ichi Yasuda

This chapter describes a method for designing decentralized simulation and control architecture for multiple robot systems based on the discrete event net models. Extended Petri nets are adopted as an effective tool to describe, design, and control cooperative behavior of multiple robots based on asynchronous, concurrent processes. By hierarchical decomposition of the net model of the overall system, global and local Petri net models are assigned to the upper level and the lower level controllers, respectively. For the lower level control, individual net models of robots are executed on separate local controllers. The unified net representation for cooperative control is also proposed. Overall control software is implemented and executed on a general hierarchical and distributed control architecture corresponding to the hardware structure of multiple robot systems.


Author(s):  
R. Sánchez-Herrera ◽  
N. Villanueva-Paredes ◽  
E. López-Mellado

2020 ◽  
Vol 51 (9) ◽  
pp. 1528-1541 ◽  
Author(s):  
Belkacem Kada ◽  
Ahmed S. A. Balamesh ◽  
Khalid A. Juhany ◽  
Ibraheem M. Al-Qadi

Author(s):  
Elzbieta Roszkowska ◽  
Janusz Jakubiak

This work continues our study on the control synthesis for multiple mobile robot systems (MMRS). We assume a hybrid approach that comprises the supervisory control level, based on a discrete event model of MMRS, and the robot control level, based on a continuous time model of the robot motion. Our objective is to further develop the control concept towards its implementation in a real-world application – a testbed for a fleet of six laboratory robots. In the first part of the paper, we develop a methodology of the supervisory control synthesis, that employs the Petri net formalism and formally ensures the required logics of MMRS operation, as well as propose a relevant architecture of the supervisor. The second part is focused on the low-level robot control and control procedures enabling modification of the robot motion according to the supervisor’s decisions. A simulation case is presented that illustrates the operation of the system.


Sign in / Sign up

Export Citation Format

Share Document