Human-Robot Interaction Design Using Smart Device Based Robot Partner

2019 ◽  
pp. 119-140
Author(s):  
Jinseok Woo ◽  
Naoyuki Kubota

Nowadays, various robot partners have been developed to realize human-friendly interactions. In general, a robot system is composed of hardware modules, software modules, and application contents. It takes much time to design utterance contents and motion patterns as application contents simultaneously, but the design support systems mainly focus on the generation of robot motion patterns. Furthermore, a methodology is needed to easily change the specification of hardware and software according to diversified needs, and the developmental environment to design the application contents on verbal and nonverbal communication with people. In this paper, the authors propose robot partners with the modularized architecture of hardware and software by using smart devices, and propose a developmental environment to realize easy contents design of verbal and nonverbal communication. In order to solve the problem of difficulty in the content design, they develop a design support environment using design templates of communication application contents. Next, they apply the robot partner to navigate visitors to the robot contest of the system design forum held in Tokyo Metropolitan University. Finally, they show several examples of the interaction cases, and discuss the interaction design for smart device based robot partners.

2016 ◽  
Vol 6 (2) ◽  
pp. 23-43 ◽  
Author(s):  
Jinseok Woo ◽  
Naoyuki Kubota

Nowadays, various robot partners have been developed to realize human-friendly interactions. In general, a robot system is composed of hardware modules, software modules, and application contents. It takes much time to design utterance contents and motion patterns as application contents simultaneously, but the design support systems mainly focus on the generation of robot motion patterns. Furthermore, a methodology is needed to easily change the specification of hardware and software according to diversified needs, and the developmental environment to design the application contents on verbal and nonverbal communication with people. In this paper, the authors propose robot partners with the modularized architecture of hardware and software by using smart devices, and propose a developmental environment to realize easy contents design of verbal and nonverbal communication. In order to solve the problem of difficulty in the content design, they develop a design support environment using design templates of communication application contents. Next, they apply the robot partner to navigate visitors to the robot contest of the system design forum held in Tokyo Metropolitan University. Finally, they show several examples of the interaction cases, and discuss the interaction design for smart device based robot partners.


2020 ◽  
Vol 10 (22) ◽  
pp. 7992
Author(s):  
Jinseok Woo ◽  
Yasuhiro Ohyama ◽  
Naoyuki Kubota

This paper presents a robot partner development platform based on smart devices. Humans communicate with others based on the basic motivations of human cooperation and have communicative motives based on social attributes. Understanding and applying these communicative motives become important in the development of socially-embedded robot partners. Therefore, it is becoming more important to develop robots that can be applied according to needs while taking these human communication elements into consideration. The role of a robot partner is more important in not only on the industrial sector but also in households. However, it seems that it will take time to disseminate robots. In the field of service robots, the development of robots according to various needs is important and the system integration of hardware and software becomes crucial. Therefore, in this paper, we propose a robot partner development platform for human-robot interaction. Firstly, we propose a modularized architecture of robot partners using a smart device to realize a flexible update based on the re-usability of hardware and software modules. In addition, we show examples of implementing a robot system using the proposed architecture. Next, we focus on the development of various robots using the modular robot partner system. Finally, we discuss the effectiveness of the proposed robot partner system through social implementation and experiments.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2347
Author(s):  
Yanyan Wang ◽  
Lin Wang ◽  
Ruijuan Zheng ◽  
Xuhui Zhao ◽  
Muhua Liu

In smart homes, the computational offloading technology of edge cloud computing (ECC) can effectively deal with the large amount of computation generated by smart devices. In this paper, we propose a computational offloading strategy for minimizing delay based on the back-pressure algorithm (BMDCO) to get the offloading decision and the number of tasks that can be offloaded. Specifically, we first construct a system with multiple local smart device task queues and multiple edge processor task queues. Then, we formulate an offloading strategy to minimize the queue length of tasks in each time slot by minimizing the Lyapunov drift optimization problem, so as to realize the stability of queues and improve the offloading performance. In addition, we give a theoretical analysis on the stability of the BMDCO algorithm by deducing the upper bound of all queues in this system. The simulation results show the stability of the proposed algorithm, and demonstrate that the BMDCO algorithm is superior to other alternatives. Compared with other algorithms, this algorithm can effectively reduce the computation delay.


2021 ◽  
Vol 10 (3) ◽  
pp. 1-25
Author(s):  
Ajung Moon ◽  
Maneezhay Hashmi ◽  
H. F. Machiel Van Der Loos ◽  
Elizabeth A. Croft ◽  
Aude Billard

When the question of who should get access to a communal resource first is uncertain, people often negotiate via nonverbal communication to resolve the conflict. What should a robot be programmed to do when such conflicts arise in Human-Robot Interaction? The answer to this question varies depending on the context of the situation. Learning from how humans use hesitation gestures to negotiate a solution in such conflict situations, we present a human-inspired design of nonverbal hesitation gestures that can be used for Human-Robot Negotiation. We extracted characteristic features of such negotiative hesitations humans use, and subsequently designed a trajectory generator (Negotiative Hesitation Generator) that can re-create the features in robot responses to conflicts. Our human-subjects experiment demonstrates the efficacy of the designed robot behaviour against non-negotiative stopping behaviour of a robot. With positive results from our human-robot interaction experiment, we provide a validated trajectory generator with which one can explore the dynamics of human-robot nonverbal negotiation of resource conflicts.


AI & Society ◽  
2021 ◽  
Author(s):  
Nora Fronemann ◽  
Kathrin Pollmann ◽  
Wulf Loh

AbstractTo integrate social robots in real-life contexts, it is crucial that they are accepted by the users. Acceptance is not only related to the functionality of the robot but also strongly depends on how the user experiences the interaction. Established design principles from usability and user experience research can be applied to the realm of human–robot interaction, to design robot behavior for the comfort and well-being of the user. Focusing the design on these aspects alone, however, comes with certain ethical challenges, especially regarding the user’s privacy and autonomy. Based on an example scenario of human–robot interaction in elder care, this paper discusses how established design principles can be used in social robotic design. It then juxtaposes these with ethical considerations such as privacy and user autonomy. Combining user experience and ethical perspectives, we propose adjustments to the original design principles and canvass our own design recommendations for a positive and ethically acceptable social human–robot interaction design. In doing so, we show that positive user experience and ethical design may be sometimes at odds, but can be reconciled in many cases, if designers are willing to adjust and amend time-tested design principles.


Author(s):  
Shiyang Dong ◽  
Takafumi Matsumaru

AbstractThis paper shows a novel walking training system for foot-eye coordination. To design customizable trajectories for different users conveniently in walking training, a new system which can track and record the actual walking trajectories by a tutor and can use these trajectories for the walking training by a trainee is developed. We set the four items as its human-robot interaction design concept: feedback, synchronization, ingenuity and adaptability. A foot model is proposed to define the position and direction of a foot. The errors in the detection method used in the system are less than 40 mm in position and 15 deg in direction. On this basis, three parts are structured to achieve the system functions: Trajectory Designer, Trajectory Viewer and Mobile Walking Trainer. According to the experimental results,we have confirmed the systemworks as intended and designed such that the steps recorded in Trajectory Designer could be used successfully as the footmarks projected in Mobile Walking Trainer and foot-eye coordination training would be conducted smoothly.


Author(s):  
Mohamad Alameddine ◽  
Hussein Soueidan ◽  
Maha Makki ◽  
Hani Tamim ◽  
Eveline Hitti

BACKGROUND The use of smart devices (SD) by healthcare providers in care settings is a common practice nowadays. Such use is not restricted to applications related to the care of patients but often extends to personal calls and applications with frequent prompts and interruptions. This enhances the risk of distractions caused by SD in the hospital settings and raises concerns on service quality and patient safety. Such concerns are exacerbated in complex care settings like the Emergency Department (ED). OBJECTIVE This study measured the frequency and patterns of SD use among healthcare providers in the ED of a large academic health center in Lebanon. The perceived consequences of care providers on using SDs on the provider-provider communication and the care quality of patients in ED were further assessed. The study further examined the factors associated with the use of smart devices and measured the approval for regulating such use. METHODS The study was carried at the ED of an academic health center in Lebanon. The ED received the highest volume of patient visits in the country. Data was collected using a cross-sectional electronic survey sent to all ED healthcare providers (n=236). The target population included core ED faculty members, attending physicians, residents, medical students, and the nursing care providers. RESULTS Half of the target population responded to the questionnaire. A total of 85.6% of the respondents use one or more medical applications on their smart devices. The respondents believed that using the SD in the ED improved the coordination among the care team (81.6%) and that it was beneficial to patient care (78.9%). In addition, 41.1% of the respondents acknowledged they were distracted when using their SD for non-work purposes. Furthermore, 54.8% of the respondents acknowledged having witnessed their colleagues committed a near miss or an error due to the smart device-caused distractions. Regression analysis revealed that age and missing information due to using the SD are major predictors of committing an error at the ED (p<0.05). Interestingly, more than 40% of the respondents were significantly addicted to using SD and more than third of them felt the need to cut down on such use. CONCLUSIONS The findings of this study make it imperative to safeguard the safety and wellbeing of patients, particularly in high intensity, high volume department such as the ED. Irrespective of the positive role the SD play in the healthcare process, the negative effects of its use mandate proper regulation. This is an ethical mandate taking into consideration the important consequences such use may have on care processes and outcomes.


Sign in / Sign up

Export Citation Format

Share Document