scholarly journals Using Haptic Feedback in Human-Swarm Interaction

2019 ◽  
pp. 544-571
Author(s):  
Steven Nunnally ◽  
Phillip Walker ◽  
Michael Lewis ◽  
Nilanjan Chakraborty ◽  
Katia Sycara

A swarm of robots is a large group of individual agents that autonomously coordinate via local control laws. Their emergent behavior allows simple robots to accomplish complex tasks. Since missions may have complex objectives that change dynamically due to environmental and mission changes, human control and influence over the swarm is needed. The field of Human Swarm Interaction (HSI) is young, with few user studies, and even fewer papers focusing on giving non-visual feedback to the operator. The authors will herein present a background of haptics in robotics and swarms and two studies that explore various conditions under which haptic feedback may be useful in HSI. The overall goal of the studies is to explore the effectiveness of haptic feedback in the presence of other visual stimuli about the swarm system. The findings show that giving feedback about nearby obstacles using a haptic device can improve performance, and that a combination of feedback from obstacle forces via the visual and haptic channels provide the best performance.

2021 ◽  
Vol 14 (3) ◽  
pp. 1-14
Author(s):  
Silvia Ceccacci ◽  
Andrea Generosi ◽  
Alma Leopardi ◽  
Maura Mengoni ◽  
And Ferruccio Mandorli

This article reports the results of a research aimed to evaluate the ability of a haptic interface to improve the user experience (UX) with virtual museum systems. In particular, two user studies have been carried out to (1) compare the experience aroused during the manipulation of a 3D printed replica of an artifact with a pen-like stylus with that aroused during the interaction (visual and tactile) with a 3D rendering application using a haptic interface and PC monitor, and (2) compare the users’ perceived usability and UX among a traditional mouse-based desktop interface, haptic interface, and haptic gamified interface based on the SUS scale and the AttrakDiff2 questionnaire. A total of 65 people were involved. The considered haptic application is based on the haptic device Omega 6 produced by Force Dimension, and it is a permanent attraction of the Museo Archeologico Nazionale delle Marche. Results suggest that the proposed haptic interface is suitable for people who commonly use mouse-based computer interaction, but without previous experience with haptic systems, and provide some insights useful to better understand the role of haptic feedback and gamification in enhancing UX with virtual museums, and to guide the development of other similar applications in the future.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Guan-Yang Liu ◽  
Yi Wang ◽  
Chao Huang ◽  
Chen Guan ◽  
Dong-Tao Ma ◽  
...  

The goal of haptic feedback in robotic teleoperation is to enable users to accurately feel the interaction force measured at the slave side and precisely understand what is happening in the slave environment. The accuracy of the feedback force describing the error between the actual feedback force felt by a user at the master side and the measured interaction force at the slave side is the key performance indicator for haptic display in robotic teleoperation. In this paper, we evaluate the haptic feedback accuracy in robotic teleoperation via experimental method. A special interface iHandle and two haptic devices, iGrasp-T and iGrasp-R, designed for robotic teleoperation are developed for experimental evaluation. The device iHandle integrates a high-performance force sensor and a micro attitude and heading reference system which can be used to identify human upper limb motor abilities, such as posture maintenance and force application. When a user is asked to grasp the iHandle and maintain a fixed position and posture, the fluctuation value of hand posture is measured to be between 2 and 8 degrees. Based on the experimental results, human hand tremble as input noise sensed by the haptic device is found to be a major reason that results in the noise of output force from haptic device if the spring-damping model is used to render feedback force. Therefore, haptic rendering algorithms should be independent of hand motion information to avoid input noise from human hand to the haptic control loop in teleoperation. Moreover, the iHandle can be fixed at the end effector of haptic devices; iGrasp-T or iGrasp-R, to measure the output force/torque from iGrasp-T or iGrasp-Rand to the user. Experimental results show that the accuracy of the output force from haptic device iGrasp-T is approximately 0.92 N, and using the force sensor in the iHandle can compensate for the output force inaccuracy of device iGrasp-T to 0.1 N. Using a force sensor as the feedback link to form a closed-loop feedback force control system is an effective way to improve the accuracy of feedback force and guarantee high-fidelity of feedback forces at the master side in robotic teleoperation.


Author(s):  
Kurosh Zarei-nia ◽  
Nariman Sepehri

A control scheme for teleoperation of hydraulic actuators, using a haptic device, is developed and experimentally evaluated in this paper. In the control laws, the position error between the displacement of the haptic device and the hydraulic actuator movement is used at both master and slave sides to maintain good position tracking at the actuator side while providing a haptic force to the operator. Lyapunov’s stability theory and LaSalle’s invariant set theorems are employed to prove the asymptotic stability of the system. It is shown that beside stability, the system performs well in terms of position tracking of the hydraulic actuator and providing a feel of telepresence to the operator. Proposed controller only needs system’s pressures and displacements that are easy to obtain via on-line measurements. Additionally, the controller does not need any information about the parameters of the system. These characteristics make the controller very attractive from the implementation view point.


Author(s):  
Aidan Kehoe ◽  
Flaithri Neff ◽  
Ian Pitt

There are numerous challenges to accessing user assistance information in mobile and ubiquitous computing scenarios. For example, there may be little-or-no display real estate on which to present information visually, the user’s eyes may be busy with another task (e.g., driving), it can be difficult to read text while moving, etc. Speech, together with non-speech sounds and haptic feedback can be used to make assistance information available to users in these situations. Non-speech sounds and haptic feedback can be used to cue information that is to be presented to users via speech, ensuring that the listener is prepared and that leading words are not missed. In this chapter, we report on two studies that examine user perception of the duration of a pause between a cue (which may be a variety of non-speech sounds, haptic effects or combined non-speech sound plus haptic effects) and the subsequent delivery of assistance information using speech. Based on these user studies, recommendations for use of cue pause intervals in the range of 600 ms to 800 ms are made.


2008 ◽  
Vol 49 (1) ◽  
Author(s):  
Faieza Abdul Aziz ◽  
D. T. Pham ◽  
Shamsuddin Sulaiman ◽  
Napsiah Ismail ◽  
Mohd Khairol Anuar Ariffin ◽  
...  

2019 ◽  
Vol 121 (4) ◽  
pp. 1543-1560 ◽  
Author(s):  
Robert W. Nickl ◽  
M. Mert Ankarali ◽  
Noah J. Cowan

Volitional rhythmic motor behaviors such as limb cycling and locomotion exhibit spatial and timing regularity. Such rhythmic movements are executed in the presence of exogenous visual and nonvisual cues, and previous studies have shown the pivotal role that vision plays in guiding spatial and temporal regulation. However, the influence of nonvisual information conveyed through auditory or touch sensory pathways, and its effect on control, remains poorly understood. To characterize the function of nonvisual feedback in rhythmic arm control, we designed a paddle juggling task in which volunteers bounced a ball off a rigid elastic surface to a target height in virtual reality by moving a physical handle with the right hand. Feedback was delivered at two key phases of movement: visual feedback at ball peaks only and simultaneous audio and haptic feedback at ball-paddle collisions. In contrast to previous work, we limited visual feedback to the minimum required for jugglers to assess spatial accuracy, and we independently perturbed the spatial dimensions and the timing of feedback. By separately perturbing this information, we evoked dissociable effects on spatial accuracy and timing, confirming that juggling, and potentially other rhythmic tasks, involves two complementary processes with distinct dynamics: spatial error correction and feedback timing synchronization. Moreover, we show evidence that audio and haptic feedback provide sufficient information for the brain to control the timing synchronization process by acting as a metronome-like cue that triggers hand movement. NEW & NOTEWORTHY Vision contains rich information for control of rhythmic arm movements; less is known, however, about the role of nonvisual feedback (touch and sound). Using a virtual ball bouncing task allowing independent real-time manipulation of spatial location and timing of cues, we show their dissociable roles in regulating motor behavior. We confirm that visual feedback is used to correct spatial error and provide new evidence that nonvisual event cues act to reset the timing of arm movements.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Faraz Shah ◽  
Ilia G. Polushin

The paper deals with the design of control algorithms for virtual reality based telerobotic system with haptic feedback that allows for the remote control of the vertical drilling operation. The human operator controls the vertical penetration velocity using a haptic device while simultaneously receiving the haptic feedback from the locally implemented virtual environment. The virtual environment is rendered as a virtual spring with stiffness updated based on the estimate of the stiffness of the rock currently being cut. Based on the existing mathematical models of drill string/drive systems and rock cutting/penetration process, a robust servo controller is designed which guarantees the tracking of the reference vertical penetration velocity of the drill bit. A scheme for on-line estimation of the rock intrinsic specific energy is implemented. Simulations of the proposed control and parameter estimation algorithms have been conducted; consequently, the overall telerobotic drilling system with a human operator controlling the process using PHANTOM Omni haptic device is tested experimentally, where the drilling process is simulated in real time in virtual environment.


2005 ◽  
Vol 14 (6) ◽  
pp. 677-696 ◽  
Author(s):  
Christoph W. Borst ◽  
Richard A. Volz

We present a haptic feedback technique that combines feedback from a portable force-feedback glove with feedback from direct contact with rigid passive objects. This approach is a haptic analogue of visual mixed reality, since it can be used to haptically combine real and virtual elements in a single display. We discuss device limitations that motivated this combined approach and summarize technological challenges encountered. We present three experiments to evaluate the approach for interactions with buttons and sliders on a virtual control panel. In our first experiment, this approach resulted in better task performance and better subjective ratings than the use of only a force-feedback glove. In our second experiment, visual feedback was degraded and the combined approach resulted in better performance than the glove-only approach and in better ratings of slider interactions than both glove-only and passive-only approaches. A third experiment allowed subjective comparison of approaches and provided additional evidence that the combined approach provides the best experience.


Sign in / Sign up

Export Citation Format

Share Document