Characteristics and Suppression of Space Charge in Polyethylene

In HVDC transmission systems, the space charge accumulation of polyethylene (PE) insulation is a major problem that threatens the safe and stable operation of cables. In this chapter, nanoparticles and voltage stabilizers are used to inhibit space charge in PE, which has excellent compatibility with PE. To study the thermal, mechanical, and electrical properties of the samples, differential scanning calorimetry (DSC) testing, tensile testing, breakdown, and conductivity property were measured separately. Besides, the space charge behavior based on the PEA method was studied, and the carrier mobility was calculated by the space charge depolarization process. The experimental results indicate that PE modified by graphene oxide (GO) nanoparticles and the voltage stabilizers demonstrate the suppression of space charge accumulation in PE insulation, which has less space charge accumulation than pure PE. The results show that graphene oxide and the preferred stabilizer have broad prospects in HVDC cable applications.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuan Li ◽  
Guangya Zhu ◽  
Kai Zhou ◽  
Pengfei Meng ◽  
Guodong Wang

AbstractThis paper evaluates the potential usage of graphene/crosslinked polyethylene (graphene/XLPE) as the insulating material for high voltage direct current (HVDC) cables. Thermal, mechanical and electrical properties of blends with/without graphene were evaluated by differential scanning calorimetry (DSC), tensile strength, DC conductivity, space charge measurements and water tree aging test. The results indicate that 0.007–0.008% weight amount of graphene can improve the mechanical and electrical insulation properties of XLPE blends, namely higher tensile/yield strength, improved space charge distribution, and shorter/fewer water tree branches. The improvements mainly attribute to the high stiffness of graphene, deep traps introduced by the interaction zones of graphene and XLPE, and the blockage effect of graphene within XLPE. For thermal performance of XLPE blends, graphene nano-fillers have but limited improvement. The crystallinity of the blends barely changes with the addition of graphene. However, the crosslinking degree increases as the additive-like amounts of graphene doped. The above findings provide a guide for tailoring lightweight XLPE materials with excellent mechanical and electrical performances by doping them with a small amount of graphene.


e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Jun Ma ◽  
Changhua Liu ◽  
Rui Li ◽  
Jia Wang

AbstractChitosan (CS)/poly(vinyl alcohol) (PVA)/graphene oxide (GO) nanocomposites in the form of films are prepared in a casting and solvent evaporation method. Fourier-transform infrared spectroscopy (FTIR), X-ray diffractions (XRD), atomic force microscopy (AFM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), tensile testing and moisture uptake were used to study the structure and properties of these chitosan/poly(vinyl alcohol) /graphene oxide (PCS/GO-n) nanocomposites. The result from tensile testing indicated that the nanocomposite containing 2 wt% GO exhibits high tensile strength (71.21 MPa) with a large elongation at break (51.8%). The high mechanical properties of the nanocomposite films are mainly due to uniform dispersion of GO sheets in the polymer matrix and strong interfacial interactions among components.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1624 ◽  
Author(s):  
Chengcheng Zhang ◽  
Jianxin Chang ◽  
Hongyu Zhang ◽  
Chunyang Li ◽  
Hong Zhao

To suppress space charge accumulation and improve direct current (DC) electrical properties of insulation materials, crosslinked polyethylene modified with 2-(4-benzoyl-3-hydroxyphenoxy) ethyl acrylate (XLPE/BHEA) containing polar functional groups was prepared by melt blending. The gel content, thermal elongation, tensile strength, elongation at break, elasticity modulus, differential scanning calorimetry (DSC) and X-ray photoelectron spectra (XPS) measurement results demonstrated that the BHEA could slightly enhance the crosslinking of polyethylene (PE) and affect the mechanical properties and crystallization of XLPE, and the BHEA molecule was not easy to precipitate from XLPE after the crosslinking process. XLPE modified with 3.0 phr (parts per hundreds by weight) BHEA could effectively suppress space charge accumulation, reduce DC conduction and improve DC breakdown strength of XLPE at a higher temperature. Deeper traps were introduced in XLPE/BHEA composites due to the polar functional groups in BHEA, which could raise the potential charge injection barrier and reduce the charge carrier number and mobility to suppress space charge accumulation and reduce the conduction current density.


2020 ◽  
Vol 140 (5) ◽  
pp. 276-284
Author(s):  
Maimi Mima ◽  
Tokihiro Narita ◽  
Hiroaki Miyake ◽  
Yasuhiro Tanaka ◽  
Masahiro Kozako ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2237
Author(s):  
Eder H. C. Ferreira ◽  
Angela Aparecida Vieira ◽  
Lúcia Vieira ◽  
Guilhermino J. M. Fechine

Here, nanocomposites of high-molecular-weight polyethylene (HMWPE) and HMWPE-UHMWPE (80/20 wt.%) containing a low amount of multilayer graphene oxide (mGO) (≤0.1 wt.%) were produced via twin-screw extrusion to produce materials with a higher tribological performance than UHMWPE. Due to the high viscosity of both polymers, the nanocomposites presented a significant concentration of agglomerates. However, the mechanical (tensile) and tribological (volumetric loss) performances of the nanocomposites were superior to those of UHMWPE. The morphology of the nanocomposites was investigated using differential scanning calorimetry (DSC), microtomography, and transmission electron microscopy (TEM). The explanation for these results is based on the superlubricity phenomenon of mGO agglomerates. It was also shown that the well-exfoliated mGO also contained in the nanocomposite was of fundamental importance as a mechanical reinforcement for the polymer. Even with a high concentration of agglomerates, the nanocomposites displayed tribological properties superior to UHMWPE’s (wear resistance up to 27% higher and friction coefficient up to 57% lower). Therefore, this manuscript brings a new exception to the rule, showing that agglomerates can act in a beneficial way to the mechanical properties of polymers, as long as the superlubricity phenomenon is present in the agglomerates contained in the polymer.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4374
Author(s):  
Wu-Jian Long ◽  
Xuanhan Zhang ◽  
Biqin Dong ◽  
Yuan Fang ◽  
Tao-Hua Ye ◽  
...  

Reduced graphene oxide (rGO) has been widely used to modify the mechanical performance of alkali activated slag composites (AASC); however, the mechanism is still unclear and the electrical properties of rGO reinforced AASC are unknown. Here, the rheological, mechanical, and electrical properties of the AASC containing rGO nanosheets (0, 0.1, 0.2, and 0.3 wt.%) are investigated. Results showed that rGO nanosheets addition can significantly improve the yield stress, plastic viscosity, thixotropy, and compressive strength of the AASC. The addition of 0.3 wt.% rGO nanosheets increased the stress, viscosity, thixotropy, and strength by 186.77 times, 3.68 times, 15.15 times, and 21.02%, respectively. As for electrical properties, the impedance of the AASC increased when the rGO content was less than 0.2 wt.% but decreased with the increasing dosage. In contrast, the dielectric constant and electrical conductivity of the AASC containing rGO nanosheets decreased and then increased, which can be attributed to the abundant interlayer water and the increasing structural defects as the storage sites for charge carriers, respectively. In addition, the effect of graphene oxide (GO) on the AASC is also studied and the results indicated that the agglomeration of GO nanosheets largely inhibited the application of it in the AASC, even with a small dosage.


Sign in / Sign up

Export Citation Format

Share Document