Periodontal and Implant Treatment With Computerized Occlusal Analysis

Author(s):  
Nicolas Cohen, DDS

The role of occlusion in the progression of periodontal disease remains a controversial subject. Occlusal force, which is a mechanical stress applied to tissues, has always been considered to not initiate, nor accelerate, periodontal attachment loss resultant from inflammatory periodontal disease. This chapter outlines this controversy in great detail, from the perspective that the absence of a validated occlusal force and timing measuring device that can quantify the occlusion, has contributed to the confusion and questions that exist in the scientific community about the relationship between both periodontal disease and peri-implantitis, and the occlusion. The development of a new occlusal measurement technology that records and analyzes precise and reproducible relative occlusal contact force levels in real-time, independent of a clinician's subjectivity, is helping to change the scientific opinion regarding occlusion's role in periodontal and peri-implant supporting tissue loss. The T-Scan 10 system is particularly adapted for treating patients who demonstrate tissue loss combined with occlusal issues. Indeed, after having controlled the major etiologic and risk factors of periodontal disease and peri-implantitis, adjusting the occlusion after active tissue and implant therapy favors healing. The outcome of periodontal treatment aimed at compromised teeth and dental implants, combined with occlusal force excess control from computer-guided targeted occlusal adjustments, is highly predictable, and is characterized by less inflammation, a decrease of probing depths, and the stabilization of bone levels around teeth and dental implants.

Author(s):  
Nicolas Cohen, DDS, MS, PhD

This chapter addresses the ongoing controversy regarding occlusion's role in the progression of periodontal disease. Occlusal force has been considered a non-factor in the initiation of periodontal attachment loss. However, the absence of a validated measuring device or quantifying method for analyzing the occlusion has contributed to the confusion that still exists in the scientific community today about the relationship between periodontal disease and occlusion. The development of the T-Scan occlusal measurement technology, which is independent of a clinician's occlusal contact force level subjective assessment, may change the scientific opinion about occlusion's role in periodontal disease. This chapter illustrates how the T-Scan 8 system aids in treating patients who have tissue loss and occlusal issues. Notably, after the major etiologic risk factors of periodontal disease have been controlled, adjusting the occlusion with the T-Scan improves healing outcomes resulting in less inflammation, decreased probing depths, and bone level stability.


Author(s):  
Nicolas Cohen, DDS, MS, PhD

This chapter addresses the ongoing controversy regarding occlusion's role in the progression of periodontal disease. Occlusal force has been considered a non-factor in the initiation of periodontal attachment loss. However, the absence of a validated measuring device or quantifying method for analyzing the occlusion has contributed to the confusion that still exists in the scientific community today about the relationship between periodontal disease and occlusion. The development of the T-Scan occlusal measurement technology, which is independent of a clinician's occlusal contact force level subjective assessment, may change the scientific opinion about occlusion's role in periodontal disease. This chapter illustrates how the T-Scan 8 system aids in treating patients who have tissue loss and occlusal issues. Notably, after the major etiologic risk factors of periodontal disease have been controlled, adjusting the occlusion with the T-Scan improves healing outcomes resulting in less inflammation, decreased probing depths, and bone level stability.


2015 ◽  
Vol 18 (2) ◽  
pp. 9 ◽  
Author(s):  
Rafael Binato Junqueira ◽  
Guilherme De Siqueira F. Anzaloni Saavedra ◽  
Nelson Luiz De Macedo

<p>The occlusal trauma is an injury to the insertion apparatus as a result of excessive occlusal force, and its interaction with periodontal/peri-implant disease remains controversial topic in the literature. The aim of this study was to review the literature about the relationship between occlusal trauma and periodontal/peri-implant disease, through an analysis of experimental studies in humans and animals, as well as systematic reviews that discussed the role of occlusal factor as etiological or aggravating periodontal/peri-implant disease. It was concluded that, although not considered a cause for the development of periodontitis and peri-implantitis, occlusal trauma can exacerbate bone loss around the teeth or implants. Moreover, the diversity of methodologies in studies on the subject might contribute to the conflicting results available, highlighting the importance of standardization and more detailed research criteria.</p><p><strong> </strong></p><strong>Keywords:</strong> Dental implants; Periodontal diseases; Peri-implantitis; Traumatic dental


Author(s):  
Jinhwan Kim, DDS, MS, PhD

The relative occlusal force and real-time occlusal contact timing data provided by the T-Scan technology can be used to manage the insertion occlusal force design of implant prostheses, as their long-term survivability is tied directly to their installed occlusal function. This chapter discusses how in daily dental practice clinicians spend a great deal of time making corrective occlusal adjustments using solely articulating paper as their intended guide. However, current research shows that articulating paper markings do not measure occlusal force, such that implant occlusal force control is compromised, which can lead to peri-implant tissue loss, breakage of implant restorative components, and de-osseointegration. However, by using the T-Scan technology, the clinician eliminates the subjectivity involved in using articulating paper ensuring the occlusal design of newly installed implant prostheses are optimal improving prosthesis longevity. Examples are presented of how T-Scan force and time data can aid in implant restoration occlusal force control.


Author(s):  
Jinhwan Kim, DDS MS PhD

The relative occlusal force and real-time occlusal contact timing data provided by the T-Scan technology can be used to manage the insertion occlusal force design of implant prostheses, as their long-term survivability is tied directly to their installed occlusal function. This chapter discusses how in daily dental practice, clinicians spend a great deal of time making corrective occlusal adjustments using solely articulating paper as their intended guide. However, current research shows that articulating paper markings do not measure occlusal force, and that dentists poorly Subjectively Interpret the appearance characteristics of the markings, such that implant occlusal force control is highly compromised, leading to peri-implant tissue loss, de-osseointegration, and elevated frequency rates of breakage of implant restorative components. However, by using the T-Scan technology, the clinician eliminates the subjectivity involved in using articulating paper. This ensures the occlusal design of newly-installed implant prostheses are optimal, ensuring prosthesis longevity. Case examples are presented of how occlusal adjustments that employ T-Scan force and timing data with simultaneously-recorded EMG data aid in implant restoration occlusal force control by not only lessening masticatory muscle hyperactivity, but also by improving the muscle tone and length of the face, head, and neck musculature.


Author(s):  
Sarah Qadeer, BDS, MSD ◽  
Lertrit Sarinnaphakorn, DDS

The traditional occlusal indicators used in dental practice are articulation papers, Shim-stock foils, elastomeric impression materials, and occlusal wax strips. These static dental materials have been widely believed to have occlusal force descriptive capability. However, modern material studies are challenging the widespread belief that occlusal indicator materials can measure differing occlusal force levels. This chapter evaluates the force reporting limitations of these static occlusal indicators, and discusses how clinicians subjectively interpret their appearance characteristics to determine differing occlusal force levels. This chapter then compares these non-digital occlusal indicators to the T-Scan computerized occlusal analysis technology, that records and displays precise, quantifiable, relative occlusal force variances, and occlusal contact timing sequences. This digital data aids the clinician in making a more accurate occlusal analysis, and can guide the clinician in the correction of occlusal contact force and timing abnormalities, thereby eliminating the subjectivity that is inherent with traditional occlusal indicator use. This chapter further details the diagnostic occlusal capabilities of the T-Scan's digital force and timing data, by presenting two separate studies that compared measured closure and excursive occlusal contact force and timing parameters in orthodontic and non-orthodontic young adults. A commentary is included regarding the clinical pitfalls of using maximally invasive, subjective interpretation to choose occlusal contacts for treatment instead of employing minimally invasive, computer-guided occlusal contact selection. This last section clearly illustrates to the reader that both patients and dentists will markedly benefit from the implementation of occlusal measurement technology.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 675
Author(s):  
Samira Elmanfi ◽  
Mustafa Yilmaz ◽  
Wilson W. S. Ong ◽  
Kofi S. Yeboah ◽  
Herman O. Sintim ◽  
...  

Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides—including c-di-GMP, c-di-AMP, and cGAMP—of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms “STING”, “TBK 1”, “IRF3”, and “cGAS”—alone, or together with “periodontitis”. Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Nathália Vieira Batista ◽  
Roberta Cristelli Fonseca ◽  
Denise Perez ◽  
Rafaela Vaz Sousa Pereira ◽  
Juliana de Lima Alves ◽  
...  

Platelet-activating factor (PAF) is known to be an important mediator of anaphylaxis. However, there is a lack of information in the literature about the role of PAF in food allergy. The aim of this work was to elucidate the participation of PAF during food allergy development and the consequent adipose tissue inflammation along with its alterations. Our data demonstrated that, both before oral challenge and after 7 days receiving ovalbumin (OVA) diet, OVA-sensitized mice lacking the PAF receptor (PAFR) showed a decreased level of anti-OVA IgE associated with attenuated allergic markers in comparison to wild type (WT) mice. Moreover, there was less body weight and adipose tissue loss in PAFR-deficient mice. However, some features of inflamed adipose tissue presented by sensitized PAFR-deficient and WT mice after oral challenge were similar, such as a higher rate of rolling leukocytes in this tissue and lower circulating levels of adipokines (resistin and adiponectin) in comparison to nonsensitized mice. Therefore, PAF signaling through PAFR is important for the allergic response to OVA but not for the adipokine alterations caused by this inflammatory process. Our work clarifies some effects of PAF during food allergy along with its role on the metabolic consequences of this inflammatory process.


Sign in / Sign up

Export Citation Format

Share Document