Adoption of Machine Learning With Adaptive Approach for Securing CPS

Author(s):  
Rama Mercy Sam Sigamani

The cyber physical system safety and security is the major concern on the incorporated components with interface standards, communication protocols, physical operational characteristics, and real-time sensing. The seamless integration of computational and distributed physical components with intelligent mechanisms increases the adaptability, autonomy, efficiency, functionality, reliability, safety, and usability of cyber-physical systems. In IoT-enabled cyber physical systems, cyber security is an essential challenge due to IoT devices in industrial control systems. Computational intelligence algorithms have been proposed to detect and mitigate the cyber-attacks in cyber physical systems, smart grids, power systems. The various machine learning approaches towards securing CPS is observed based on the performance metrics like detection accuracy, average classification rate, false negative rate, false positive rate, processing time per packet. A unique feature of CPS is considered through structural adaptation which facilitates a self-healing CPS.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 487 ◽  
Author(s):  
Mahmoud Elsisi ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
Mohamed M. F. Darwish

The modern control infrastructure that manages and monitors the communication between the smart machines represents the most effective way to increase the efficiency of the industrial environment, such as smart grids. The cyber-physical systems utilize the embedded software and internet to connect and control the smart machines that are addressed by the internet of things (IoT). These cyber-physical systems are the basis of the fourth industrial revolution which is indexed by industry 4.0. In particular, industry 4.0 relies heavily on the IoT and smart sensors such as smart energy meters. The reliability and security represent the main challenges that face the industry 4.0 implementation. This paper introduces a new infrastructure based on machine learning to analyze and monitor the output data of the smart meters to investigate if this data is real data or fake. The fake data are due to the hacking and the inefficient meters. The industrial environment affects the efficiency of the meters by temperature, humidity, and noise signals. Furthermore, the proposed infrastructure validates the amount of data loss via communication channels and the internet connection. The decision tree is utilized as an effective machine learning algorithm to carry out both regression and classification for the meters’ data. The data monitoring is carried based on the industrial digital twins’ platform. The proposed infrastructure results provide a reliable and effective industrial decision that enhances the investments in industry 4.0.


Phishing attacks have risen by 209% in the last 10 years according to the Anti Phishing Working Group (APWG) statistics [19]. Machine learning is commonly used to detect phishing attacks. Researchers have traditionally judged phishing detection models with either accuracy or F1-scores, however in this paper we argue that a single metric alone will never correlate to a successful deployment of machine learning phishing detection model. This is because every machine learning model will have an inherent trade-off between it’s False Positive Rate (FPR) and False Negative Rate (FNR). Tuning the trade-off is important since a higher or lower FPR/FNR will impact the user acceptance rate of any deployment of a phishing detection model. When models have high FPR, they tend to block users from accessing legitimate webpages, whereas a model with a high FNR will allow the users to inadvertently access phishing webpages. Either one of these extremes may cause a user base to either complain (due to blocked pages) or fall victim to phishing attacks. Depending on the security needs of a deployment (secure vs relaxed setting) phishing detection models should be tuned accordingly. In this paper, we demonstrate two effective techniques to tune the trade-off between FPR and FNR: varying the class distribution of the training data and adjusting the probabilistic prediction threshold. We demonstrate both techniques using a data set of 50,000 phishing and 50,000 legitimate sites to perform all experiments using three common machine learning algorithms for example, Random Forest, Logistic Regression, and Neural Networks. Using our techniques we are able to regulate a model’s FPR/FNR. We observed that among the three algorithms we used, Neural Networks performed best; resulting in an higher F1-score of 0.98 with corresponding FPR/FNR values of 0.0003 and 0.0198 respectively.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1241
Author(s):  
Tarun Ganesh Palla ◽  
Shahab Tayeb

The advancement in recent IoT devices has led to catastrophic attacks on the devices resulting in breaches in user privacy and exhausting resources of various organizations, so that users and organizations expend increased time and money. One such harmful malware is Mirai, which has created worldwide recognition by impacting the digital world. There are several ways to detect Mirai, but the Machine Learning approach has proved to be accurate and reliable in detecting malware. In this research, a novel-based approach of detecting Mirai using Machine Learning Algorithm is proposed and implemented in Matlab and Python. To evaluate the proposed approaches, Mirai and Benign datasets are considered and training is performed on the dataset comprised of a Training set, Cross-Validation set and Test set using Artificial Neural Network (ANN) consisting of neurons in the hidden layer, which provides consistent accuracy, precision, recall and F-1 score. In this research, an accurate number of hidden layers and neurons are chosen to avoid the problem of Overfitting. This research provides a comparative analysis between ANN and Random Forest models of the dataset formed by merging Mirai and benign datasets of the Mirai malware detection pertaining to seven IoT devices. The dataset used in this research is “N-BaIoT” dataset, which represents data in the features infected by Mirai Malware. The results are found to be accurate and reliable as the best performance was achieved with an accuracy of 92.8% and False Negative rate of 0.3% and F-1 score of 0.99. The expected outcomes of this project, include major findings towards cost-effective Learning solutions in detecting Mirai Malware strains.


2018 ◽  
Vol 18 (1) ◽  
pp. 11-29 ◽  
Author(s):  
Dharmaraj R. Patil ◽  
J. B. Patil

Abstract Researchers all over the world have provided significant and effective solutions to detect malicious URLs. Still due to the ever changing nature of cyberattacks, there are many open issues. In this paper, we have provided an effective hybrid methodology with new features to deal with this problem. To evaluate our approach, we have used state-of-the-arts supervised decision tree learning classifications models. We have performed our experiments on the balanced dataset. The experimental results show that, by inclusion of new features all the decision tree learning classifiers work well on our labeled dataset, achieving 98-99% detection accuracy with very low False Positive Rate (FPR) and False Negative Rate (FNR). Also we have achieved 99.29% detection accuracy with very low FPR and FNR using majority voting technique, which is better than the wellknown anti-virus and anti-malware solutions.


Author(s):  
Curtis G. Northcutt

The recent proliferation of embedded cyber components in modern physical systems [1] has generated a variety of new security risks which threaten not only cyberspace, but our physical environment as well. Whereas earlier security threats resided primarily in cyberspace, the increasing marriage of digital technology with mechanical systems in cyber-physical systems (CPS), suggests the need for more advanced generalized CPS security measures. To address this problem, in this paper we consider the first step toward an improved security model: detecting the security attack. Using logical truth tables, we have developed a generalized algorithm for intrusion detection in CPS for systems which can be defined over discrete set of valued states. Additionally, a robustness algorithm is given which determines the level of security of a discrete-valued CPS against varying combinations of multiple signal alterations. These algorithms, when coupled with encryption keys which disallow multiple signal alteration, provide for a generalized security methodology for both cyber-security and cyber-physical systems.


2021 ◽  
Vol 10 (7) ◽  
pp. 1543
Author(s):  
Morwenn Le Boulc’h ◽  
Julia Gilhodes ◽  
Zara Steinmeyer ◽  
Sébastien Molière ◽  
Carole Mathelin

Background: This systematic review aimed at comparing performances of ultrasonography (US), magnetic resonance imaging (MRI), and fluorodeoxyglucose positron emission tomography (PET) for axillary staging, with a focus on micro- or micrometastases. Methods: A search for relevant studies published between January 2002 and March 2018 was conducted in MEDLINE database. Study quality was assessed using the QUality Assessment of Diagnostic Accuracy Studies checklist. Sensitivity and specificity were meta-analyzed using a bivariate random effects approach; Results: Across 62 studies (n = 10,374 patients), sensitivity and specificity to detect metastatic ALN were, respectively, 51% (95% CI: 43–59%) and 100% (95% CI: 99–100%) for US, 83% (95% CI: 72–91%) and 85% (95% CI: 72–92%) for MRI, and 49% (95% CI: 39–59%) and 94% (95% CI: 91–96%) for PET. Interestingly, US detects a significant proportion of macrometastases (false negative rate was 0.28 (0.22, 0.34) for more than 2 metastatic ALN and 0.96 (0.86, 0.99) for micrometastases). In contrast, PET tends to detect a significant proportion of micrometastases (true positive rate = 0.41 (0.29, 0.54)). Data are not available for MRI. Conclusions: In comparison with MRI and PET Fluorodeoxyglucose (FDG), US is an effective technique for axillary triage, especially to detect high metastatic burden without upstaging majority of micrometastases.


2020 ◽  
Vol 68 (9) ◽  
pp. 711-719
Author(s):  
Mathias Uslar

ZusammenfassungIn diesem Beitrag wird die Notwendigkeit einer sinnvollen Definition und Klarstellung der Disziplin Energieinformatik aufgezeigt. Der Beitrag diskutiert verschiedene bestehende Definitionen und stellt sie in den Kontext des Anforderungsmanagements und der Lösungsfindung. Er motiviert die Notwendigkeit eines strukturierten disziplinären Ansatzes in der Energieinformatik auf der Grundlage bestehender Probleme und skizziert den aktuellen Stand des Stands der Wissenschaft und Technik, der hauptsächlich den systemtechnischen Anwendungsbereich für Smart Grids umfasst. Synergien mit anderen aktuellen Schwerpunktthemen wie Internet der Dinge (IoT), Industrie 4.0 (Digitalisierung der Produktion) und Cyber-Physical Systems (CPS) werden aus Anforderungssicht motiviert. Auf der Grundlage der aufgeworfenen Fragen und Herausforderungen werden neue sinnvolle Forschungsthemen für ein durchgängiges Anforderungsmanagement im Kontext Smart Grid diskutiert.


Sign in / Sign up

Export Citation Format

Share Document