Mitigation of Climate Change Impacts Through Treatment and Management of Low Quality Water for Irrigation in Pakistan

Author(s):  
Ghulam Murtaza ◽  
Muhammad Saqib ◽  
Saifullah ◽  
Muhammad Zia-ur-Rehman ◽  
Muhammad Naveed ◽  
...  

The Indus Plains of Pakistan are situated in arid to semi-arid climate where monsoon rains are erratic and mostly fall in the months of July and August. These rains are not only insufficient to grow even a single crop without artificial irrigation but also cause flood havoc very frequently that is associated with the climate change. The Indus river transports water for agriculture, industry and domestic usage within the basin and downstream. The Indus Basin is among the few basins severely affected by global warming and resulting climate change. The alteration in temporal and spatial patterns of rainfall has resulted in unexpected drought and floods. About 70 to 80% of total river flows occur in summer season due to snow melt and monsoonal rainfalls. Lack of storage reservoirs has decreased the ability to regulate flood water as well as its potential use during the drought season along with cheap hydro-electricity generation. The sedimentation in the system has limited the storage capacity of the existing three reservoirs by 28%. Consequently carry over capacity of these storage structures is only 30 days compared to 120 to 220 days in India and 900 days in Colorado Basin. Pakistan is facing shortage of good quality water due to competition among agricultural and non-agricultural sectors, this scenario will continue rather will further aggravate in future. According to the climate change scenario, the warming is reflected in the river-flow data of Pakistan, especially during the past 2-3 decades. To bridge the gap between fresh water availability and demand, ground water is being pumped to meet the irrigation requirements of crops. The pumped ground water (70-80%) is brackish and could become a sustainability issue in the long run. The prolonged agricultural uses of such water will deteriorate soils, crops and human living environments. Water quality parameters usually considered include electrical conductivity (EC) for total soluble salts, and sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) reflect the sodicity hazards. In order to limit or even to eliminate adverse effects of such waters, certain treatment and/or management options are considered as important pre-requisites. For bringing down high concentration of total soluble salts, dilution with good quality water is the doable practice. To decrease high SAR of irrigation water, a source of calcium is needed, dilution (with good quality water) will decrease SAR by the square root times of the dilution factor, while use of acids will be cost-intensive rather may adversely impact the soil health. For high RSC, dilution with low CO32-+HCO3- water will serve the purpose, addition of Ca-salts will raise Ca2++Mg2+ to bring a decrease in water RSC, while acids will neutralize CO32-+HCO3- to lower water RSC. Gypsum is the most economical and safe amendment while acids could also decrease RSC but at higher relative cost. City wastewater and seed priming in aerated gypsum solution is also presented. Such practices at small and/or large scale surely will help a lot to sustain the food security and the environment in the days to come where climate change has to be experienced round the world. Therefore, a well-coordinated program is necessary to create awareness among different sections of the society including the policy makers, general public, organizations, industrialists and farmers.

Author(s):  
Ghulam Murtaza ◽  
Muhammad Saqib ◽  
Saifullah ◽  
Muhammad Zia-ur Rehman ◽  
Muhammad Naveed ◽  
...  

The Indus Plains of Pakistan are situated in arid to semi-arid climate where monsoon rains are erratic and mostly fall in the months of July and August. These rains are not only insufficient to grow even a single crop without artificial irrigation but also cause flood havoc very frequently that is associated with the climate change. The Indus river transports water for agriculture, industry and domestic usage within the basin and downstream. The Indus Basin is among the few basins severely affected by global warming and resulting climate change. The alteration in temporal and spatial patterns of rainfall has resulted in unexpected drought and floods. About 70 to 80% of total river flows occur in summer season due to snow melt and monsoonal rainfalls. Lack of storage reservoirs has decreased the ability to regulate flood water as well as its potential use during the drought season along with cheap hydro-electricity generation. The sedimentation in the system has limited the storage capacity of the existing three reservoirs by 28%. Consequently carry over capacity of these storage structures is only 30 days compared to 120 to 220 days in India and 900 days in Colorado Basin. Pakistan is facing shortage of good quality water due to competition among agricultural and non-agricultural sectors, this scenario will continue rather will further aggravate in future. According to the climate change scenario, the warming is reflected in the river-flow data of Pakistan, especially during the past 2-3 decades. To bridge the gap between fresh water availability and demand, ground water is being pumped to meet the irrigation requirements of crops. The pumped ground water (70-80%) is brackish and could become a sustainability issue in the long run. The prolonged agricultural uses of such water will deteriorate soils, crops and human living environments. Water quality parameters usually considered include electrical conductivity (EC) for total soluble salts, and sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) reflect the sodicity hazards. In order to limit or even to eliminate adverse effects of such waters, certain treatment and/or management options are considered as important pre-requisites. For bringing down high concentration of total soluble salts, dilution with good quality water is the doable practice. To decrease high SAR of irrigation water, a source of calcium is needed, dilution (with good quality water) will decrease SAR by the square root times of the dilution factor, while use of acids will be cost-intensive rather may adversely impact the soil health. For high RSC, dilution with low CO32-+HCO3- water will serve the purpose, addition of Ca-salts will raise Ca2++Mg2+ to bring a decrease in water RSC, while acids will neutralize CO32-+HCO3- to lower water RSC. Gypsum is the most economical and safe amendment while acids could also decrease RSC but at higher relative cost. City wastewater and seed priming in aerated gypsum solution is also presented. Such practices at small and/or large scale surely will help a lot to sustain the food security and the environment in the days to come where climate change has to be experienced round the world. Therefore, a well-coordinated program is necessary to create awareness among different sections of the society including the policy makers, general public, organizations, industrialists and farmers.


Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 49
Author(s):  
Leonel J. R. Nunes ◽  
Mauro A. M. Raposo ◽  
Carlos J. Pinto Gomes

The occupation of a territory combines a set of variables which affect the development of the mode by which populations have been organized throughout history. How this occupation takes place demonstrates much of a territory’s past and shows how the populations managed to make the most out of the available resources. The region of Entre-Douro-e-Minho (Northern Portugal), similarly to what happens in other regions, such as Galicia (Northern Spain), Brittany (Northern France), or Ireland, presents a type of dispersed land use, with an alternation of urban, agriculture, and forest areas. On one hand, this proximity allows urban populations to come into contact with a rural environment. On the other hand, this proximity also causes a set of problems, namely those related to rural fires, which are now enhanced by climate change, and associated phenomena, such as heatwaves and the lack of precipitation. The present work analyzes the evolution of rural fires in 1975–2019, in the municipality of Guimarães (Northern Portugal), to understand how these events have been distributed over time and evolved in a climate change scenario. Based on the results and discussion presented, it can be concluded that there is an increasing trend in the occurrence of rural fires in the territory under study, and that this can also be associated to climate change, in the form of a gradual increment in temperature, particularly in the autumn months, and a decrease in rainfall. This situation is responsible for the increment of the risk caused by the proximity of the populations to forest and agricultural areas because rural fires can jeopardize the safety of people and goods.


Author(s):  
Jamal H. Ougahi ◽  
Mark E. J. Cutler ◽  
Simon J. Cook

Abstract Climate change has implications for water resources by increasing temperature, shifting precipitation patterns and altering the timing of snowfall and glacier melt, leading to shifts in the seasonality of river flows. Here, the Soil & Water Assessment Tool was run using downscaled precipitation and temperature projections from five global climate models (GCMs) and their multi-model mean to estimate the potential impact of climate change on water balance components in sub-basins of the Upper Indus Basin (UIB) under two emission (RCP4.5 and RCP8.5) and future (2020–2050 and 2070–2100) scenarios. Warming of above 6 °C relative to baseline (1974–2004) is projected for the UIB by the end of the century (2070–2100), but the spread of annual precipitation projections among GCMs is large (+16 to −28%), and even larger for seasonal precipitation (+91 to −48%). Compared to the baseline, an increase in summer precipitation (RCP8.5: +36.7%) and a decrease in winter precipitation were projected (RCP8.5: −16.9%), with an increase in average annual water yield from the nival–glacial regime and river flow peaking 1 month earlier. We conclude that predicted warming during winter and spring could substantially affect the seasonal river flows, with important implications for water supplies.


1999 ◽  
Vol 12 (1) ◽  
pp. 258-272 ◽  
Author(s):  
Aristita Busuioc ◽  
Hans von Storch ◽  
Reiner Schnur

Abstract Empirical downscaling procedures relate large-scale atmospheric features with local features such as station rainfall in order to facilitate local scenarios of climate change. The purpose of the present paper is twofold: first, a downscaling technique is used as a diagnostic tool to verify the performance of climate models on the regional scale; second, a technique is proposed for verifying the validity of empirical downscaling procedures in climate change applications. The case considered is regional seasonal precipitation in Romania. The downscaling model is a regression based on canonical correlation analysis between observed station precipitation and European-scale sea level pressure (SLP). The climate models considered here are the T21 and T42 versions of the Hamburg ECHAM3 atmospheric GCM run in “time-slice” mode. The climate change scenario refers to the expected time of doubled carbon dioxide concentrations around the year 2050. The downscaling model is skillful for all seasons except spring. The general features of the large-scale SLP variability are reproduced fairly well by both GCMs in all seasons. The climate models reproduce the empirically determined precipitation–SLP link in winter, whereas the observed link is only partially captured for the other seasons. Thus, these models may be considered skillful with respect to regional precipitation during winter, and partially during the other seasons. Generally, applications of statistical downscaling to climate change scenarios have been based on the assumption that the empirical link between the large-scale and regional parameters remains valid under a changed climate. In this study, a rationale is proposed for this assumption by showing the consistency of the 2 × CO2 GCM scenarios in winter, derived directly from the gridpoint data, with the regional scenarios obtained through empirical downscaling. Since the skill of the GCMs in regional terms is already established, it is concluded that the downscaling technique is adequate for describing climatically changing regional and local conditions, at least for precipitation in Romania during winter.


2019 ◽  
Vol 9 (23) ◽  
pp. 4992 ◽  
Author(s):  
Soldatenko

Research findings suggest that water (hydrological) cycle of the earth intensifies in response to climate change, since the amount of water that evaporates from the ocean and land to the atmosphere and the total water content in the air will increase with temperature. In addition, climate change affects the large-scale atmospheric circulation by, for example, altering the characteristics of extratropical transient eddies (cyclones), which play a dominant role in the meridional transport of heat, moisture, and momentum from tropical to polar latitudes. Thus, climate change also affects the planetary hydrological cycle by redistributing atmospheric moisture around the globe. Baroclinic instability, a specific type of dynamical instability of the zonal atmospheric flow, is the principal mechanism by which extratropical cyclones form and evolve. It is expected that, due to global warming, the two most fundamental dynamical quantities that control the development of baroclinic instability and the overall global atmospheric dynamics—the parameter of static stability and the meridional temperature gradient (MTG)—will undergo certain changes. As a result, climate change can affect the formation and evolution of transient extratropical eddies and, therefore, macro-exchange of heat and moisture between low and high latitudes and the global water cycle as a whole. In this paper, we explore the effect of changes in the static stability parameter and MTG caused by climate change on the annual-mean eddy meridional moisture flux (AMEMF), using the two classical atmospheric models: the mid-latitude f-plane model and the two-layer β-plane model. These models are represented in two versions: “dry,” which considers the static stability of dry air alone, and “moist,” in which effective static stability is considered as a combination of stability of dry and moist air together. Sensitivity functions were derived for these models that enable estimating the influence of infinitesimal perturbations in the parameter of static stability and MTG on the AMEMF and on large-scale eddy dynamics characterized by the growth rate of unstable baroclinic waves of various wavelengths. For the base climate change scenario, in which the surface temperature increases by 1 °C and warming of the upper troposphere outpaces warming of the lower troposphere by 2 °C (this scenario corresponds to the observed warming trend), the response of the mass-weighted vertically averaged annual mean MTG is -0.2 ℃ per 1000 km. The dry static stability increases insignificantly relative to the reference climate state, while on the other hand, the effective static stability decreases by more than 5.4%. Assuming that static stability of the atmosphere and the MTG are independent of each other (using One-factor-at-a-time approach), we estimate that the increase in AMEMF caused by change in MTG is about 4%. Change in dry static stability has little effect on AMEMF, while change in effective static stability leads to an increase in AMEMF of about 5%. Thus, neglecting atmospheric moisture in calculations of the atmospheric static stability leads to tangible differences between the results obtained using the dry and moist models. Moist models predict ~9% increase in AMEMF due to global warming. Dry models predict ~4% increase in AMEMF solely because of the change in MTG. For the base climate change scenario, the average temperature of the lower troposphere (up to ~4 km), in which the atmospheric moisture is concentrated, increases by ~1.5 ℃. This leads to an increase in specific humidity of about 10.5%. Thus, since both AMEMF and atmospheric water vapor content increase due to the influence of climate change, a rather noticeable restructuring of the global water cycle is expected.


1970 ◽  
Vol 3 ◽  
pp. 119-127
Author(s):  
Bharat Gotame

There are ample of evidences to prove the impacts of Climate Change and will be with us for a long time to come. It will have significant impact on natural systems so that most of the habitat of living organism is directly influenced moreover the human being (which is heterotrophic in nature) and their roles to sustain the development and earth at summary are being vulnerable. This literature review article tries to summarize some climate change scenario and its increasing impact over the livelihood assets and their direct/indirect influence to development fronts. Nepal a developing country having more than 70% of mountainous regions with agriculture based economy is more susceptible to climate change impacts. Planning of development activities remarked with increasing trend of climate change impact with pivotal theme should make the development more sustainable and long living. Existing initiatives to make adaptation options are insufficient to halt the expected danger and redesigning the module of development is urgent in Nepal. On adaptation and vulnerability, a continuing effort must take place to exchange experiences and look for emerging best practices and frameworks. The urgency of the issue requires planners, policy makers, evaluators, practitioners and researchers to become involved in designing and in empowering communities and government as well. Key Words: Climate change, Development, Planning, Economic impact, Adaptation   DOI: 10.3126/init.v3i0.2503 The Initiation Vol.3 2009 p.119-127


2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Ankit Bhatt ◽  
Ajay Pradhan

Streamflow and rainfall estimates have utmost importance to compute detailed water availability and hydrology for many sectors such as agriculture, water management, and food security. There are various models developed over the years for runoff estimation but among them only a few models incorporate climate change factors. Snowmelt and rainfall are the main sources of surface as well as groundwater resource and the main inputs in runoff models for estimation of streamflow. There are numerous factors which leads to climate change which intern affects the distribution on rainfall on spatial and temporal scales and the rate of melting of snows in the Himalayan region. Uncertainties in projected changes in the hydrological systems arise from internal variability in the climatic system, uncertainty about future greenhouse gas and aerosol emissions, the translations of these emissions into climate change by global climate models, and hydrological model uncertainty. Projections become less consistent between models as the spatial scale decreases. The uncertainty of climate model projections for freshwater assessments is often taken into account by using multi-model ensembles. The multi-model ensemble approach is, however, not a guarantee of reducing uncertainty in mathematical models. In recent years the floods have occurred due to high intensity rainfall occurred in a very short time, but in several cases the flooding has also occurred because the rainfall has fallen at times when all the storage systems have not been emptied after the previous rainfall. This is what we call coupled rainfall. There is currently no recommendation for how to take coupled rainfall account when applying the climate change scenario. It is estimated that such changes represent at a large scale, and cannot be applied to shorter temporal and smaller spatial scales. In areas where rainfall and runoff are very low (e.g., desert areas), small changes in runoff can lead to large percentage changes. In some regions, the sign of projected changes in runoff differs from recently observed trends. Moreover, in some areas with projected increases in runoff, different seasonal effects are expected, such as increased wet season runoff and decreased dry season runoff. Studies using results from fewer climate models can be considerably different from the other models


2018 ◽  
Vol 11 (1) ◽  
pp. 140 ◽  
Author(s):  
Rafael de Oliveira Tiezzi ◽  
Nathalia Duarte Braz Vieira ◽  
Andre Felipe Simoes ◽  
Homero Fonseca Filho ◽  
Ednílson Viana ◽  
...  

Climate change is taking special attention among the economic agents, especially due to the uncertainties and risks associated with it. In countries with a significant share of renewables in their energy matrix, this phenomenon implies on challenges for the energy planning in future scenarios. In this context, this study establishes a correlation between energy security and climate change by understanding the ability to generate hydroelectric power in large-scale hydroelectric (HEP) and small hydroelectric plants (SHP), in the Alto Paranapanema Basin (São Paulo, Brazil), a region with rainfall anomalies and water flow changes due to climate change. This region was chosen based on its future scenarios on climate change, especially those of rainfall anomalies and change in water flow, using the Soil Moisture Accounting Procedure (SMAP) mathematical model. The water flow was simulated in the HidroLab model, resulting in the generation of hydroelectric power. The results indicated a loss of generation capacity, that can be attributed to negative anomalies of rainfall and its direct influence on river flow, which is a fundamental factor in hydropower generation. Thus, this study draws attention to the importance of considering climate vulnerability in energy planning now and in the future.


Sign in / Sign up

Export Citation Format

Share Document