Introduction to Bayesian Networks and Influence Diagrams

Author(s):  
Luis Enrique Sucar

In this chapter we will cover the fundamentals of probabilistic graphical models, in particular Bayesian networks and influence diagrams, which are the basis for some of the techniques and applications that are described in the rest of the book. First we will give a general introduction to probabilistic graphical models, including the motivation for using these models, and a brief history and general description of the main types of models. We will also include a brief review of the basis of probability theory. The core of the chapter will be the next three sections devoted to: (i) Bayesian networks, (ii) Dynamic Bayesian networks and (iii) Influence diagrams. For each we will introduce the models, their properties and give some examples. We will briefly describe the main inference techniques for the three types of models. For Bayesian and dynamic Bayesian nets we will talk about learning, including structure and parameter learning, describing the main types of approaches. At the end of the section on influence diagrams we will briefly introduce sequential decision problems as a link to the chapter on MDPs and POMDPs. We conclude the chapter with a summary and pointers for further reading for each topic.

2017 ◽  
Vol 59 ◽  
pp. 1-58
Author(s):  
Alexander Motzek ◽  
Ralf Möller

Modeling causal dependencies often demands cycles at a coarse-grained temporal scale. If Bayesian networks are to be used for modeling uncertainties, cycles are eliminated with dynamic Bayesian networks, spreading indirect dependencies over time and enforcing an infinitesimal resolution of time. Without a ``causal design,'' i.e., without anticipating indirect influences appropriately in time, we argue that such networks return spurious results. By identifying activator random variables, we propose activator dynamic Bayesian networks (ADBNs) which are able to rapidly adapt to contexts under a causal use of time, anticipating indirect influences on a solid mathematical basis using familiar Bayesian network semantics. ADBNs are well-defined dynamic probabilistic graphical models allowing one to model cyclic dependencies from local and causal perspectives while preserving a classical, familiar calculus and classically known algorithms, without introducing any overhead in modeling or inference.


2005 ◽  
Vol 14 (03) ◽  
pp. 507-543 ◽  
Author(s):  
ANDERS L. MADSEN ◽  
FRANK JENSEN ◽  
UFFE B. KJÆRULFF ◽  
MICHAEL LANG

As the framework of probabilistic graphical models becomes increasingly popular for knowledge representation and inference, the need for efficient tools for its support is increasing. The Hugin Tool is a general purpose tool for construction, maintenance, and deployment of Bayesian networks and influence diagrams. This paper surveys the key functionality of the Hugin Tool and reports on new advances of the tool. Furthermore, an empirical analysis reports on the efficiency of the Hugin Tool on common inference and learning tasks.


2017 ◽  
Vol 9 (3/4) ◽  
pp. 347-370 ◽  
Author(s):  
Flaminia Musella ◽  
Roberta Guglielmetti Mugion ◽  
Hendry Raharjo ◽  
Laura Di Pietro

Purpose This paper aims to holistically reconcile internal and external customer satisfaction using probabilistic graphical models. The models are useful not only in the identification of the most sensitive factors for the creation of both internal and external customer satisfaction but also in the generation of improvement scenarios in a probabilistic way. Design/methodology/approach Standard Bayesian networks and object-oriented Bayesian networks are used to build probabilistic graphical models for internal and external customers. For each ward, the model is used to evaluate satisfaction drivers by category, and scenarios for the improvement of overall satisfaction variables are developed. A global model that is based on an object-oriented network is modularly built to provide a holistic view of internal and external satisfaction. The linkage is created by building a global index of internal and external satisfaction based on a linear combination. The model parameters are derived from survey data from an Italian hospital. Findings The results that were achieved with the Bayesian networks are consistent with the results of previous research, and they were obtained by using a partial least squares path modelling tool. The variable ‘Experience’ is the most relevant internal factor for the improvement of overall patient satisfaction. To improve overall employee satisfaction, the variable ‘Product/service results’ is the most important. Finally, for a given target of overall internal and external satisfaction, external satisfaction is more sensitive to improvement than internal satisfaction. Originality/value The novelty of the paper lies in the efforts to link internal and external satisfaction based on a probabilistic expert system that can generate improvement scenarios. From an academic viewpoint, this study moves the service profit chain theory (Heskett et al., 1994) forward by delivering operational guidelines for jointly managing the factors that affect internal and external customer satisfaction in service organizations using a holistic approach.


2007 ◽  
Vol 29 ◽  
pp. 421-489 ◽  
Author(s):  
C. Pralet ◽  
G. Verfaillie ◽  
T. Schiex

Numerous formalisms and dedicated algorithms have been designed in the last decades to model and solve decision making problems. Some formalisms, such as constraint networks, can express "simple" decision problems, while others are designed to take into account uncertainties, unfeasible decisions, and utilities. Even in a single formalism, several variants are often proposed to model different types of uncertainty (probability, possibility...) or utility (additive or not). In this article, we introduce an algebraic graphical model that encompasses a large number of such formalisms: (1) we first adapt previous structures from Friedman, Chu and Halpern for representing uncertainty, utility, and expected utility in order to deal with generic forms of sequential decision making; (2) on these structures, we then introduce composite graphical models that express information via variables linked by "local" functions, thanks to conditional independence; (3) on these graphical models, we finally define a simple class of queries which can represent various scenarios in terms of observabilities and controllabilities. A natural decision-tree semantics for such queries is completed by an equivalent operational semantics, which induces generic algorithms. The proposed framework, called the Plausibility-Feasibility-Utility (PFU) framework, not only provides a better understanding of the links between existing formalisms, but it also covers yet unpublished frameworks (such as possibilistic influence diagrams) and unifies formalisms such as quantified boolean formulas and influence diagrams. Our backtrack and variable elimination generic algorithms are a first step towards unified algorithms.


2015 ◽  
Vol 53 ◽  
pp. 223-270 ◽  
Author(s):  
Akshat Kumar ◽  
Shlomo Zilberstein ◽  
Marc Toussaint

Decentralized POMDPs provide an expressive framework for multiagent sequential decision making. However, the complexity of these models---NEXP-Complete even for two agents---has limited their scalability. We present a promising new class of approximation algorithms by developing novel connections between multiagent planning and machine learning. We show how the multiagent planning problem can be reformulated as inference in a mixture of dynamic Bayesian networks (DBNs). This planning-as-inference approach paves the way for the application of efficient inference techniques in DBNs to multiagent decision making. To further improve scalability, we identify certain conditions that are sufficient to extend the approach to multiagent systems with dozens of agents. Specifically, we show that the necessary inference within the expectation-maximization framework can be decomposed into processes that often involve a small subset of agents, thereby facilitating scalability. We further show that a number of existing multiagent planning models satisfy these conditions. Experiments on large planning benchmarks confirm the benefits of our approach in terms of runtime and scalability with respect to existing techniques.


2015 ◽  
Vol 27 (5) ◽  
pp. 395-403 ◽  
Author(s):  
Tomás Rodríguez García ◽  
Nicoletta González Cancelas ◽  
Francisco Soler-Flores

The correct prediction in the transport logistics has vital importance in the adequate means and resource planning and in their optimisation. Up to this date, port planning studies were based mainly on empirical, analytical or simulation models. This paper deals with the possible use of Bayesian networks in port planning. The methodology indicates the work scenario and how the network was built. The network was afterwards used in container terminals planning, with the support provided by the tools of the Elvira code. The main variables were defined and virtual scenarios inferences were realised in order to carry out the analysis of the container terminals scenarios through probabilistic graphical models. Having performed the data analysis on the different terminals and on the considered variables (berth, area, TEU, crane number), the results show the possible relationships between them. Finally, the conclusions show the obtained values on each considered scenario.


Author(s):  
Shyamala G. Nadathur

Large datasets are regularly collected in biomedicine and healthcare (here referred to as the ‘health domain’). These datasets have some unique characteristics and problems. Therefore there is a need for methods which allow modelling in spite of the uniqueness of the datasets, capable of dealing with missing data, allow integrating data from various sources, explicitly indicate statistical dependence and independence and allow modelling with uncertainties. These requirements have given rise to an influx of new methods, especially from the fields of machine learning and probabilistic graphical models. In particular, Bayesian Networks (BNs), which are a type of graphical network model with directed links that offer a general and versatile approach to capturing and reasoning with uncertainty. In this chapter some background mathematics/statistics, description and relevant aspects of building the networks are given to better understand s and appreciate BN’s potential. There are also brief discussions of their applications, the unique value and the challenges of this modelling technique for the domain. As will be seen in this chapter, with the additional advantages the BNs can offer, it is not surprising that it is becoming an increasingly popular modelling tool in the health domain.


Author(s):  
Chao-Lin Liu

This chapter purveys an account of Bayesian networks-related technologies for modeling students in intelligent tutoring systems. Uncertainty exists ubiquitously when we infer students’ internal status, for example, learning needs and emotion, from their external behavior, for example, responses to test items and explorative actions. Bayesian networks offer a mathematically sound mechanism for representing and reasoning about students under uncertainty. This chapter consists of five sections, and commences with a brief overview of intelligent tutoring systems, emphasizing the needs for uncertain reasoning. A succinct survey of Bayesian networks for student modeling is provided in Bayesian Networks, and we go through an example of applying Bayesian networks and mutual information to item selection in computerized adaptive testing in Applications to Student Models. We then touch upon influence diagrams and dynamic Bayesian networks for educational applications in More Graphical Models, and wrap up the chapter with an outlook and discussion for this research direction.


1999 ◽  
Vol 13 (4) ◽  
pp. 321-351 ◽  
Author(s):  
PAUL J. KRAUSE

A probabilistic network is a graphical model that encodes probabilistic relationships between variables of interest. Such a model records qualitative influences between variables in addition to the numerical parameters of the probability distribution. As such it provides an ideal form for combining prior knowledge, which might be limited solely to experience of the influences between some of the variables of interest, and data. In this paper, we first show how data can be used to revise initial estimates of the parameters of a model. We then progress to showing how the structure of the model can be revised as data is obtained. Techniques for learning with incomplete data are also covered. In order to make the paper as self contained as possible, we start with an introduction to probability theory and probabilistic graphical models. The paper concludes with a short discussion on how these techniques can be applied to the problem of learning causal relationships between variables in a domain of interest.


2008 ◽  
pp. 115-125
Author(s):  
Gero Schwenk

The analysis of relations between different levels of a system is a key issue in social science simulation. Here, I discuss the contribution of different modeling methodologies to this. Special emphasis is given to the formalism of “Probabilistic Graphical Models“, resp. “Bayesian Networks“, which is both advantageous for level transitory inference and integration of empirical data. Furthermore, issues of practicability and area of application are considered. The argumentation is exemplified by demonstration of a toy-application for which explicit level-transitory statements are inferred.


Sign in / Sign up

Export Citation Format

Share Document