Recent Advances in Fluidized Bed Gasification of Oil Palm Empty Fruit Bunches

Author(s):  
Bemgba Bevan Nyakuma ◽  
Olagoke Oladokun

The chapter presents recent developments in the gasification of oil palm empty fruit bunches (EFB) through fluidized bed gasifiers. The bioenergy potential of oil palm EFB as an environmentally friendly biomass is presented. Furthermore, the chapter highlights the prospects of utilising biomass gasification technology as a practical method for valorising EFB. The successful development and deployment of gasification for oil palm EFB depends on a critical understanding of the fundamental theories of the chemical reactions, classification, and operational parameters of biomass gasifiers. Hence, the potential use of fluidized bed gasifiers for oil palm empty fruit bunches (EFB) is highlighted in detail. Next, the analysis of the fundamental theories, assumptions, and equations of fluidization critical to fluidized bed gasification of EFB is presented. The chapter concludes by highlighting the potential of oil palm EFB as a low-cost, abundant, lignocellulosic feedstock for valorisation through fluidized bed gasification.

2014 ◽  
Vol 521 ◽  
pp. 676-679
Author(s):  
Feng Hai Li ◽  
Jie Jie Huang ◽  
Yi Tian Fang

To optimize operational parameters of fluidized-bed lignite gasification technology. Experiments have been conducted with Huolinhe (HLH) and Xiaolongtan (XLT) lignite ashes to investigate the mineral transformation behaviors under reducing atmosphere by X-ray diffraction (XRD). The results show that the initial melted parts are primarily result from wustite interacted other minerals under reducing atmosphere. Wustite can react with aluminosilicate minerals to form some low-melting eutectic compounds, and lead to its initial melting temperature 200 °C below the deformation temperature. Mullite is formed at 1000 °C or so, and its content increases and then decreases with the temperature increase, and reaches maximum at 1200 °C. Gehlenite and anorthite come from the reaction between calcium oxide and mullite. Owing to the generation of some gases during mineral transformation under weak reducing atmosphere, many holes are formed on the surface of molten ash.


2016 ◽  
Vol 78 (8-3) ◽  
Author(s):  
Bemgba Bevan Nyakuma ◽  
Arshad Ahmad ◽  
Anwar Johari ◽  
Tuan A. T. Abdullah ◽  
Olagoke Oladokun ◽  
...  

Gasification of Oil Palm Empty Fruit Bunches (OPEFB) briquettes was investigated in an air blown 4.5 kW allothermal fluidized bed gasifier to examine the effects of bed temperature (600 – 800 °C) and equivalence ratio (λ = 0.25) on bio-syngas yield and composition. In addition, physicochemical and thermochemical characterization of the fuel properties of the OPEFB briquettes were also examined. The results demonstrate that pelletization improved the solid biomass fuel (SBF) properties of OPEFB including moisture content and higher heating value (HHV). The gasification of OPEFB briquettes produced bio-syngas comprising H2, CO, CO2, CH4 as well as solid biochar with a HHV higher than the original OPEFB briquettes. The highest yield of H2 was obtained at 600 °C while HHV of the bio-syngas was within the range 4 - 8 MJ/Nm3 for air gasification in fluidized bed gasifiers. In addition, agglomeration of bed materials did not occur during OPEFB briquettes gasification despite its high bed agglomeration potential (BAP). In conclusion, the gasification of OPEFB briquettes into bio-syngas and biochar is a practical route for bioenergy production in Malaysia


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Seyed Ali Zamani ◽  
Robiah Yunus ◽  
A. W. Samsuri ◽  
M. A. Mohd Salleh ◽  
Bahareh Asady

This study aims to produce optimized biochar from oil palm empty fruit bunches (OPEFB), as a green, low cost adsorbent for uptake of zinc from aqueous solution. The impact of pyrolysis conditions, namely, highest treatment temperature (HTT), heating rate (HR), and residence time (RT) on biochar yield and adsorption capacity towards zinc, was investigated. Mathematical modeling and optimization of independent variables were performed employing response surface methodology (RSM). HTT was found to be the most influential variable, followed by residence time and heating rate. Based on the central composite design (CCD), two quadratic models were developed to correlate three independent variables to responses. The optimum production condition for OPEFB biochar was found as follows: HTT of 615°C, HR of 8°C/min, and RT of 128 minutes. The optimum biochar showed 15.18 mg/g adsorption capacity for zinc and 25.49% of yield which was in agreement with the predicted values, satisfactory. Results of the characterization of optimum product illustrated well-developed BET surface area and porous structure in optimum product which favored its sorptive ability.


2019 ◽  
Vol 4 (3) ◽  
pp. 90 ◽  
Author(s):  
Laksmita Prima Santi ◽  
Donny Nugroho Kalbuadi ◽  
Didiek Hadjar Goenadi

In Indonesia, the development of oil palm plantations has been going on a pervasive way; they covered about 14.03 million hectares in 2017. This massive coverage of land might then generate a tremendous amount of biomass per year, both in the form of both solid and liquid wastes. The processing of fresh fruit bunches (FFB) in palm oil mill (POM) produces wastes that primarily in the form of empty fruit bunches (EFB), which is amounting of up to 25% (w/w) of FFB. It has been being indicated that EFB contains a considerable amount of silica (Si) which attracts the Indonesian Research Institute for Biotechnology and Bioindustry (IRIBB) to investigate the potential use of EFB as a source of bio-available Si, in the form of H4SiO4 (mono silicic acid, BioSilAc). The experiment was carried out at Sungai Mirah Minting Estate, PT Bumitama Gunajaya Agro-Central Kalimantan. The EFB material was obtained from POM and chopped into 2.5-5.0 cm in size. A four-week bio-decomposition process was employed by using bio-decomposers containing Trichoderma pseudokoningii, T. polysporum, and Phanerochaete chrysosporium. Chemical analyses of composted EFB were conducted before and 28-days after decomposer application. The presence of Si in the compost was observed by scanning electron microscopy (SEM).  The effect of Si-containing EFB compost on the immature and mature oil palm was evaluated. Seven treatments, i.e. combination of EFB compost and BioSilAc application with reduced-dosages of NPK fertilisers were arranged in a random block design with three replicates. The results show that large quantities of silica bodies attached to the surface of EFB fibres and amounting to 0.44% soluble Si. The FFB data indicated that the application of 75% NPK + 500 kg composted EFB + 2 L BioSilAc/ha/year on a five-year-old plant resulted in higher yield than that obtained from 100% standard dosage of NPK. The study also revealed that the application of EFB compost reduced 50% of BioSilAc dosage.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1489 ◽  
Author(s):  
Erdiwansyah ◽  
Mahidin ◽  
Husni Husin ◽  
Nasaruddin ◽  
Muhtadin ◽  
...  

Combustion efficiency is one of the most important parameters especially in the fluidized-bed combustor. Investigations into the efficiency of combustion in fluidized-bed combustor fuels using solid biomass waste fuels in recent years are increasingly in demand by researchers around the world. Specifically, this study aims to calculate the combustion efficiency in the fluidized-bed combustor. Combustion efficiency is calculated based on combustion results from the modification of hollow plates in the fluidized-bed combustor. The modified hollow plate aims to control combustion so that the fuel incorporated can burn out and not saturate. The combustion experiments were tested using palm oil biomass solid waste fuels such as palm kernel shell, oil palm midrib, and empty fruit bunches. The results of the measurements showed that the maximum combustion temperature for the palm kernel shell fuel reached 863 °C for M1 and 887 °C for M2. The maximum combustion temperature measurements for M1 and M2 from the oil palm midrib fuel testing reached 898 °C and 858 °C, respectively, while the maximum combustion temperature for M1 and M2 from the empty fruit bunches fuel was 667 °C and M2 847 °C, respectively. The rate of combustion efficiency with the modification of the hole plate in the fluidized-bed combustor reached 96.2%. Thermal efficiency in fluidized-bed combustors for oil palm midrib was 72.62%, for PKS was 70.03%, and for empty fruit bunches was 52.43%. The highest heat transfer rates for the oil palm midrib fuel reached 7792.36 W/m2, palm kernel shell 7167.38 W/m2, and empty fruit bunches 5127.83 W/m2. Thus, the modification of the holed plate in the fluidized-bed combustor chamber showed better performance of the plate than without modification.


2021 ◽  
Author(s):  
Farhan M. Said ◽  
Nor Farhana Hamid ◽  
Mohamad Al-Aamin Razali ◽  
Nur Fathin Shamirah Daud

The world’s largest contribution to biomass comes from lignocellulosic material. Oil palm biomass is one of the most important sources of lignocellulosic material in Asia, with biomass produced four times that of palm oil. Oil palm trunk (OPT), oil palm empty fruit bunches (OPEFB), oil palm frond (OPF), and palm oil mill effluent (POME) are examples of biomass lignocellulosic materials produced. Unfortunately, the majority of waste is disposed of in landfills, causing serious environmental issues such as global warming and the greenhouse effect. These wastes are known to contain a high concentration of cellulose and hemicellulose. Because of its high carbohydrate content, it has a promising future as a feedstock for the fermentation process, which can produce a variety of chemical products at a low cost. This chapter will describe the biochemical products produced from various oil palm biomass via various fermentation processes involving various microorganism strains.


2015 ◽  
Vol 5 (02) ◽  
Author(s):  
Erwinsyah . ◽  
Atika Afriani ◽  
Teddy Kardiansyah

Oil palm biomass derived from oil palm processing plant has a very abundant availability or nearly equal to the yield of crude palm oil. This paper provides a review of the chemical and fibers characteristics from the empty fruit bunches of oil palm tree associated with the properties of pulp and papermaking. Potential use of fibers from oil palm tree, which is included in the group of nonwood, as raw material for pulp and paper is large enough for wood substitution. Opportunities to use oil palm tree fibers as raw material for pulp and paper in industrial scale is very prospective. Keywords: empty fruit bunches, characteristics, utilization, pulp, paperABSTRAKBiomassa sawit yang berasal dari pabrik pengolahan sawit memiliki ketersediaan sangat melimpah atau hampir sama dengan rendemen minyak sawit mentah. Makalah ini memberikan tinjauan mengenai karakteristik kimia dan serat dari tandan kosong sawit terkait dengan sifat-sifat pembuatan pulp dan kertas. Potensi penggunaan serat dari tanaman sawit yang termasuk dalam kelompok nonkayu sebagai bahan baku pulp dan kertas cukup besar, untuk substitusi kayu. Peluang penggunaan serat tanaman sawit serta pemanfaatannya sebagai bahan baku pulp dan kertas skala industri cukup prospektif.Kata kunci: tandan kosong sawit, karakteristik, pemanfaatan, pulp, kertas


2020 ◽  
Vol 849 ◽  
pp. 3-7
Author(s):  
Agus Aktawan ◽  
Maryudi ◽  
Siti Salamah ◽  
Erna Astuti

National energy needs have been met by non-renewable energy resources, such as natural gas, petroleum, coal and so on. However, non-renewable energy reserves are depleting and there will be an energy crisis. Conversion of biomass into energy is one solution to overcome this. Indonesia, with its biodiversity, has enormous biomass potential, especially from oil palm plantations and also sugar cane plantations. From the oil palm plantation point of view, oil palm shells and oil palm empty fruit bunches are side products. These wastes can be treated with gasification technology to produce gas fuel. The gasification tool model used in this study is a downdraft gasifier equipped with a cyclone to separate gases with solids or liquids resulting from the gasification process. The results of the gasification process show that the more feeds are introduced, the more syngas is produced during the gasification process. The more feeds, the longer the syngas release time. The two variables have a correlation, that is, between the weight of syngas and the time for syngas removal to increase in line with the addition of the amount of feed entered. Syngas analysis of oil palm empty fruit bunches contains 4.959% H2 and 5.759% CO. Whereas the analysis of syngas of oil palm shells contained 2.524% H2, 6.391% CO, and 0.895% CH4.


Sign in / Sign up

Export Citation Format

Share Document