Optical Satellite Sensors for Tracking MH370 Debris

This chapter reviews the optical satellite data around the tracking of MH370 debris. To this end, limited optical sensors are involved in Gafen-1, Worldview-2, Thaichote, and Pleiades-1A satellite data. Moreover, Google Earth data is also implemented to define debris that likely belongs to MH370. In doing so, automatic target detection based on its spectral signature is implemented to recognize any segment of MH370 debris. Consequently, most of the debris that has shown on satellite images does not belong to MH370. Needless to say, bright spots perhaps belong to the scattering of garbage floating in ocean waters or clouds.

The main question is about how optical remote sensing can be implemented to investigate the HH370 debris. The perfect understanding of the principles of remote sensing and optical satellite data can assist to answer this question. This chapter aims at reviewing the fundamental of optical remote sensing satellite data. From the point view of the electromagnetic spectrum to physical characteristics of optical satellite sensors with high and low resolution, the MH370 debris can be recognized in satellite images. In this understanding, the chapter carries a novel explanation of remote sensing technology of MH370 as a specific and unique case. This clarification is deliberated with particular debris imagined in satellite images as quantum information, which is presented somewhere in the Indian Ocean.


2019 ◽  
Vol 11 (20) ◽  
pp. 2389 ◽  
Author(s):  
Deodato Tapete ◽  
Francesca Cigna

Illegal excavations in archaeological heritage sites (namely “looting”) are a global phenomenon. Satellite images are nowadays massively used by archaeologists to systematically document sites affected by looting. In parallel, remote sensing scientists are increasingly developing processing methods with a certain degree of automation to quantify looting using satellite imagery. To capture the state-of-the-art of this growing field of remote sensing, in this work 47 peer-reviewed research publications and grey literature are reviewed, accounting for: (i) the type of satellite data used, i.e., optical and synthetic aperture radar (SAR); (ii) properties of looting features utilized as proxies for damage assessment (e.g., shape, morphology, spectral signature); (iii) image processing workflows; and (iv) rationale for validation. Several scholars studied looting even prior to the conflicts recently affecting the Middle East and North Africa (MENA) region. Regardless of the method used for looting feature identification (either visual/manual, or with the aid of image processing), they preferred very high resolution (VHR) optical imagery, mainly black-and-white panchromatic, or pansharpened multispectral, whereas SAR is being used more recently by specialist image analysts only. Yet the full potential of VHR and high resolution (HR) multispectral information in optical imagery is to be exploited, with limited research studies testing spectral indices. To fill this gap, a range of looted sites across the MENA region are presented in this work, i.e., Lisht, Dashur, and Abusir el Malik (Egypt), and Tell Qarqur, Tell Jifar, Sergiopolis, Apamea, Dura Europos, and Tell Hizareen (Syria). The aim is to highlight: (i) the complementarity of HR multispectral data and VHR SAR with VHR optical imagery, (ii) usefulness of spectral profiles in the visible and near-infrared bands, and (iii) applicability of methods for multi-temporal change detection. Satellite data used for the demonstration include: HR multispectral imagery from the Copernicus Sentinel-2 constellation, VHR X-band SAR data from the COSMO-SkyMed mission, VHR panchromatic and multispectral WorldView-2 imagery, and further VHR optical data acquired by GeoEye-1, IKONOS-2, QuickBird-2, and WorldView-3, available through Google Earth. Commonalities between the different image processing methods are examined, alongside a critical discussion about automation in looting assessment, current lack of common practices in image processing, achievements in managing the uncertainty in looting feature interpretation, and current needs for more dissemination and user uptake. Directions toward sharing and harmonization of methodologies are outlined, and some proposals are made with regard to the aspects that the community working with satellite images should consider, in order to define best practices of satellite-based looting assessment.


2020 ◽  
Vol 12 (3) ◽  
pp. 522 ◽  
Author(s):  
Abdul Qadir ◽  
Pinki Mondal

Monsoon crops play a critical role in Indian agriculture, hence, monitoring these crops is vital for supporting economic growth and food security for the country. However, monitoring these crops is challenging due to limited availability of optical satellite data due to cloud cover during crop growth stages, landscape heterogeneity, and small field sizes. In this paper, our objective is to develop a robust methodology for high-resolution (10 m) monsoon cropland mapping appropriate for different agro-ecological regions (AER) in India. We adapted a synergistic approach of combining Sentinel-1 Synthetic Aperture Radar (SAR) data with Normalized Difference Vegetation Index (NDVI) derived from Sentinel-2 optical data using the Google Earth Engine platform. We developed a new technique, Radar Optical cross Masking (ROM), for separating cropland from non-cropland by masking out forest, plantation, and other non-dynamic features. The methodology was tested for five different AERs in India, representing a wide diversity in agriculture, soil, and climatic variations. Our findings indicate that the overall accuracy obtained by using the SAR-only approach is 90%, whereas that of the combined approach is 93%. Our proposed methodology is particularly effective in regions with cropland mixed with tree plantation/mixed forest, typical of smallholder dominated tropical countries. The proposed agriculture mask, ROM, has high potential to support the global agriculture monitoring missions of Geo Global Agriculture Monitoring (GEOGLAM) and Sentinel-2 for Agriculture (S2Agri) project for constructing a dynamic monsoon cropland mask.


This chapter demonstrates an automatic detection approach for aeroplanes in optical satellite data. This chapter hypothesizes that aeroplane fuselage can be retrieved in satellite images. Aeroplane detection is a challenging task in remote sensing images due to its variable sizes, colours, complex backgrounds, and orientations. To this end, principle component analysis (PCA) and a deep belief network (DBN) are used to detect the MH370 flight. Needless to say that all detected targets are not segments of MH370.


2013 ◽  
Vol 13 (7) ◽  
pp. 2720-2728 ◽  
Author(s):  
Jinhui Lan ◽  
Jian Li ◽  
Yong Xiang ◽  
Tonghuan Huang ◽  
Yixin Yin ◽  
...  

2011 ◽  
Vol 3 (5) ◽  
pp. 393-401 ◽  
Author(s):  
Karin Nordkvist ◽  
Ann-Helen Granholm ◽  
Johan Holmgren ◽  
Håkan Olsson ◽  
Mats Nilsson

2021 ◽  
Author(s):  
Melissa Latella ◽  
Arjen Luijendijk ◽  
Carlo Camporeale

<p>Coastal sand dunes provide a large variety of ecosystem services, among which the inland protection from marine floods. Nowadays, this protection is fundamental, and its importance will further increase in the future due to the rise of the sea level and storm violence induced by climate change. Despite the crucial role of coastal dunes and their potential application in mitigation strategies, the phenomenon of the coastal squeeze, which is mainly caused by the urban sprawl, is progressively reducing the extents of the areas where dune can freely undergo their dynamics, thus dramatically impairing their capability of providing ecosystem services.</p><p>Aiming to embed the use of satellite images in the study of coastal foredune and beach dynamics, we developed a classification algorithm that uses the satellite images and server-side functions of Google Earth Engine (GEE). The algorithm runs on the GEE Python API and allows the user to retrieve all the available images for the study site and the chosen time period from the selected sensor collection. The algorithm also filters the cloudy and saturated pixels and creates a percentile-composite image over which it applies a random forest classification algorithm. The classification is finally refined by defining a mask for land pixels only. </p><p>According to the provided training data and sensor selection, the algorithm can give different outcomes, ranging from sand and vegetation maps, beach width measurements, and shoreline time evolution visualization. This very versatile tool that can be used in a great variety of applications within the monitoring and understanding of the dune-beach systems and associated coastal ecosystem services. For instance, we show how this algorithm, combined with machine learning techniques and the assimilation of real data, can support the calibration of a coastal model that gives the natural extent of the beach width and that can be, therefore, used to plan restoration activities. </p>


Sign in / Sign up

Export Citation Format

Share Document