Disease Diagnosis and Treatment Using Deep Learning Algorithms for the Healthcare System

Author(s):  
Nirbhay Kumar Chaubey ◽  
Prisilla Jayanthi

This chapter explicates deep learning algorithms for healthcare opportunities. Deep Learning is a group of neural network algorithms and learns from various levels of representation and abstraction to aid in the data interpretation. Since the datasets get bigger, computers become more powerful, and the training of the datasets (images or numeric) gets much easier and the results achieved using deep learning are better. In contrast to machine-learning algorithms that rely on large amounts of labelled data, human cognition can find structure in unlabeled data, a technique known as unsupervised learning. It was noted that using deep learning algorithms on the dataset will reduce the number of unnecessary biopsies in future. In this chapter, the authors study deep learning algorithms to diagnose diabetic retinopathy retinal images and training a convolution neural network (CNN) algorithm to identify object tumors from a large set of brain tumor images.

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1576 ◽  
Author(s):  
Li Zhu ◽  
Lianghao Huang ◽  
Linyu Fan ◽  
Jinsong Huang ◽  
Faming Huang ◽  
...  

Landslide susceptibility prediction (LSP) modeling is an important and challenging problem. Landslide features are generally uncorrelated or nonlinearly correlated, resulting in limited LSP performance when leveraging conventional machine learning models. In this study, a deep-learning-based model using the long short-term memory (LSTM) recurrent neural network and conditional random field (CRF) in cascade-parallel form was proposed for making LSPs based on remote sensing (RS) images and a geographic information system (GIS). The RS images are the main data sources of landslide-related environmental factors, and a GIS is used to analyze, store, and display spatial big data. The cascade-parallel LSTM-CRF consists of frequency ratio values of environmental factors in the input layers, cascade-parallel LSTM for feature extraction in the hidden layers, and cascade-parallel full connection for classification and CRF for landslide/non-landslide state modeling in the output layers. The cascade-parallel form of LSTM can extract features from different layers and merge them into concrete features. The CRF is used to calculate the energy relationship between two grid points, and the extracted features are further smoothed and optimized. As a case study, the cascade-parallel LSTM-CRF was applied to Shicheng County of Jiangxi Province in China. A total of 2709 landslide grid cells were recorded and 2709 non-landslide grid cells were randomly selected from the study area. The results show that, compared with existing main traditional machine learning algorithms, such as multilayer perception, logistic regression, and decision tree, the proposed cascade-parallel LSTM-CRF had a higher landslide prediction rate (positive predictive rate: 72.44%, negative predictive rate: 80%, total predictive rate: 75.67%). In conclusion, the proposed cascade-parallel LSTM-CRF is a novel data-driven deep learning model that overcomes the limitations of traditional machine learning algorithms and achieves promising results for making LSPs.


2020 ◽  
Vol 12 (11) ◽  
pp. 1838 ◽  
Author(s):  
Zhao Zhang ◽  
Paulo Flores ◽  
C. Igathinathane ◽  
Dayakar L. Naik ◽  
Ravi Kiran ◽  
...  

The current mainstream approach of using manual measurements and visual inspections for crop lodging detection is inefficient, time-consuming, and subjective. An innovative method for wheat lodging detection that can overcome or alleviate these shortcomings would be welcomed. This study proposed a systematic approach for wheat lodging detection in research plots (372 experimental plots), which consisted of using unmanned aerial systems (UAS) for aerial imagery acquisition, manual field evaluation, and machine learning algorithms to detect the occurrence or not of lodging. UAS imagery was collected on three different dates (23 and 30 July 2019, and 8 August 2019) after lodging occurred. Traditional machine learning and deep learning were evaluated and compared in this study in terms of classification accuracy and standard deviation. For traditional machine learning, five types of features (i.e. gray level co-occurrence matrix, local binary pattern, Gabor, intensity, and Hu-moment) were extracted and fed into three traditional machine learning algorithms (i.e., random forest (RF), neural network, and support vector machine) for detecting lodged plots. For the datasets on each imagery collection date, the accuracies of the three algorithms were not significantly different from each other. For any of the three algorithms, accuracies on the first and last date datasets had the lowest and highest values, respectively. Incorporating standard deviation as a measurement of performance robustness, RF was determined as the most satisfactory. Regarding deep learning, three different convolutional neural networks (simple convolutional neural network, VGG-16, and GoogLeNet) were tested. For any of the single date datasets, GoogLeNet consistently had superior performance over the other two methods. Further comparisons between RF and GoogLeNet demonstrated that the detection accuracies of the two methods were not significantly different from each other (p > 0.05); hence, the choice of any of the two would not affect the final detection accuracies. However, considering the fact that the average accuracy of GoogLeNet (93%) was larger than RF (91%), it was recommended to use GoogLeNet for wheat lodging detection. This research demonstrated that UAS RGB imagery, coupled with the GoogLeNet machine learning algorithm, can be a novel, reliable, objective, simple, low-cost, and effective (accuracy > 90%) tool for wheat lodging detection.


Author(s):  
Raswitha Bandi, Et. al.

Support Vector Machines, Reinforcement algorithms, artificial neural networks are some of the Machine Learning Algorithms available in Medical Analysis. By using these algorithms, much of the research has been done in analysis of liver cancer for genome classification and identification of lesions. At present, Deep learning algorithms have quickly turned into a strategy for examine CT images. This article presents one of the major deep learning techniques named tensor flow technique to investigate images in scan for the task of visualization of abnormal condition of liver tumor in the context of shape and color towards disease diagnosis. We surveyed the utilization of tensor flow for classifying images, detection of objects, and detection of lesions. In this paper, we mainly concentrated on the study and working of tensor flow in image classification. Also, a summary of the present and future scope in this area has been presented in detail.


2020 ◽  
Vol 8 (6) ◽  
pp. 3756-3763

Brain Computer Interface allows disabled people to communicate with the external world by using their brain signals. The main goal of a BCI is to provide patients who suffer form any neuromuscular disorders whith a communication channel based on their brain signals. In this paper, the aim is to explore the effects of applying deep learning algorithms and Event Related Spectral Perturbation analyses on the performance of different EEG-based BCI paradigms. Two paradigms were investigated: one is based on the Matrix paradigm (known as oddball); and the other one utilizes the Rapid serial visual Presentation (RSVP) for presenting the stimuli. Deep learning algorithms of convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) were utilized to evaluate the two paradigms. Our findings showed that Matrix paradigm is more effective in detecting P300 signal. In terms of classification methods, deep learning of CNN algorithm has shown superiority performance in comparison with the other machine learning algorithms.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Zeynep Hilal Kilimci ◽  
Aykut Güven ◽  
Mitat Uysal ◽  
Selim Akyokus

Nowadays, smart devices as a part of daily life collect data about their users with the help of sensors placed on them. Sensor data are usually physical data but mobile applications collect more than physical data like device usage habits and personal interests. Collected data are usually classified as personal, but they contain valuable information about their users when it is analyzed and interpreted. One of the main purposes of personal data analysis is to make predictions about users. Collected data can be divided into two major categories: physical and behavioral data. Behavioral data are also named as neurophysical data. Physical and neurophysical parameters are collected as a part of this study. Physical data contains measurements of the users like heartbeats, sleep quality, energy, movement/mobility parameters. Neurophysical data contain keystroke patterns like typing speed and typing errors. Users’ emotional/mood statuses are also investigated by asking daily questions. Six questions are asked to the users daily in order to determine the mood of them. These questions are emotion-attached questions, and depending on the answers, users’ emotional states are graded. Our aim is to show that there is a connection between users’ physical/neurophysical parameters and mood/emotional conditions. To prove our hypothesis, we collect and measure physical and neurophysical parameters of 15 users for 1 year. The novelty of this work to the literature is the usage of both combinations of physical and neurophysical parameters. Another novelty is that the emotion classification task is performed by both conventional machine learning algorithms and deep learning models. For this purpose, Feedforward Neural Network (FFNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) neural network are employed as deep learning methodologies. Multinomial Naïve Bayes (MNB), Support Vector Regression (SVR), Decision Tree (DT), Random Forest (RF), and Decision Integration Strategy (DIS) are evaluated as conventional machine learning algorithms. To the best of our knowledge, this is the very first attempt to analyze the neurophysical conditions of the users by evaluating deep learning models for mood analysis and enriching physical characteristics with neurophysical parameters. Experiment results demonstrate that the utilization of deep learning methodologies and the combination of both physical and neurophysical parameters enhances the classification success of the system to interpret the mood of the users. A wide range of comparative and extensive experiments shows that the proposed model exhibits noteworthy results compared to the state-of-art studies.


Nowadays, machine learning and deep learning algorithms, are considered as new technologies increasingly used in the biomedical field. Machine learning is a branch of Artificial Intelligence that aims to automatically find patterns in existing data. A new Machine Learning subfield, the deep learning theory, has emerged. It deals with object recognition in images. In this paper, our goal is DNA Microarrays’analysis with these algorithms to classify two genes’ types. The first class represents cell cycle regulated genes and the second is non cell cycle regulated ones. In the current state of the art, the researchers are processing the numerical data associated to gene evolution to achieve this classification. Here, we propose a new and different approach, based on the microarrays images’ treatment. To classify images, we use three machine learning algorithms which are: Support Vector Machine, KNearest Neighbors and Random Forest Classifier. We also use the Convolutional Neural Network and the fully connected neural network algorithms. Experiments demonstrate that our approaches outperform the state of art by a margin of 14.73 per cent by using machine learning algorithms and a margin of 22.39 per cent by using deep learning models. Our models accomplish real time test accuracy of ~ 92.39 % at classifying using CNNand 94.73% using machine learning algorithms.


Due to its growth rate and strength, bamboo's versatility is huge. Bamboo has been developed to replace hardwood naturally. But it can be difficult to recognize a bamboo as many appear in a cluster or singular. Each bamboo type has its applications. Because of the utility of bamboo, we have worked in Random Forest, naive bays, logistic regression, the SVM-kernel, CNN, and ResNET, amongst several machine-learning algorithms. A similar test was carried out and delineated using graphs based on uncertainty matrix parameters and training accuracy. In this paper, we have used the data of following five species such as Phyllostachys nigra, Bambusa vulgaris ‘Striata‘, Dendrocalamus giganteu, Bambusa ventricosa, and Bambusa tulda which are generally found in north India. We trained, tested and validated the species from datasets using different machine learning and deep learning algorithms.


Informatics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 47
Author(s):  
Ning Yu ◽  
Timothy Haskins

Regional rainfall forecasting is an important issue in hydrology and meteorology. Machine learning algorithms especially deep learning methods have emerged as a part of prediction tools for regional rainfall forecasting. This paper aims to design and implement a generic computing framework that can assemble a variety of machine learning algorithms as computational engines for regional rainfall forecasting in Upstate New York. The algorithms that have been bagged in the computing framework include the classical algorithms and the state-of-the-art deep learning algorithms, such as K-Nearest Neighbors, Support Vector Machine, Deep Neural Network, Wide Neural Network, Deep and Wide Neural Network, Reservoir Computing, and Long Short Term Memory methods. Through the experimental results and the performance comparisons of these various engines, we have observed that the SVM- and KNN-based method are outstanding models over other models in classification while DWNN- and KNN-based methods outstrip other models in regression, particularly those prevailing deep-learning-based methods, for handling uncertain and complex climatic data for precipitation forecasting. Meanwhile, the normalization methods such as Z-score and Minmax are also integrated into the generic computing framework for the investigation and evaluation of their impacts on machine learning models.


MENDEL ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 113-120 ◽  
Author(s):  
Luis Antonio Beltrán Prieto ◽  
Zuzana Kominkova Oplatkova

Emotions demonstrate people's reactions to certain stimuli. Facial expression analysis is often used to identify the emotion expressed. Machine learning algorithms combined with artificial intelligence techniques have been developed in order to detect expressions found in multimedia elements, including videos and pictures. Advanced methods to achieve this include the usage of Deep Learning algorithms. The aim of this paper is to analyze the performance of a Convolutional Neural Network which uses AutoEncoder Units for emotion-recognition in human faces. The combination of two Deep Learning techniques boosts the performance of the classification system. 8000 facial expressions from the Radboud Faces Database were used during this research for both training and testing. The outcome showed that five of the eight analyzed emotions presented higher accuracy rates, higher than 90%.


2018 ◽  
Vol 7 (2.32) ◽  
pp. 327 ◽  
Author(s):  
Yaram Hari Krishna ◽  
Kanagala Bharath Kumar ◽  
Dasari Maharshi ◽  
J Amudhavel

Flower image classification using deep learning and convolutional neural network (CNN) based on machine learning in Tensor flow. Tensor flow IDE is used to implement machine learning algorithms. Flower image processing is based on supervised learning which detects the parameters of image. Parameters of the image were compared by decision algorithms. These images are classified by neurons in convolutional neural network. Video processing based on machine learning is used in restriction of downloading the videos by preventing the second response from the server and enabling the debugging of the video by removing the request from the user.   


Sign in / Sign up

Export Citation Format

Share Document