Technical and Economic Characteristics of Solar Concentrating Modules With Louvered Heliostats

The calculations confirm the high efficiency of using louvered heliostats. The maximum annual energy production by non-tracking solar concentrating modules is achieved with a vertical orientation of the concentrator, which is very important when placing solar modules on the southern facades of buildings. The annual amounts of insolation at the receiver for concentrators with a louvered heliostat with an angular aperture of 26° and 18°, respectively, are on average 2 and 3.4 times higher than the total insolation on a flat surface and 1,6 and 2,2 times higher than insolation by blind surface receiving concentrating modules with similar angular aperture values. The cost of electricity produced when using non-glare concentrating modules with louvre is reduced by 40–60% compared to concentrating modules without louver, and thermal energy by 50%.

Author(s):  
Meng Liu ◽  
Noam Lior ◽  
Na Zhang ◽  
Wei Han

This paper presents a thermoeconomic optimization of a novel zero-CO2 and other emissions and high efficiency power and refrigeration cogeneration system, COOLCEP-S† which uses the liquefied natural gas (LNG) coldness during its revaporization. It was predicted that at the turbine inlet temperature (TIT) of 900°C, the energy efficiency of the COOLCEP-S system reaches 59%. The thermoeconomic optimization determines the specific cost, the cost of electricity, and the system payback period. The optimization started by performing a thermodynamic sensitivity analysis, which has shown that for a fixed TIT and pressure ratio, the pinch point temperature difference in the recuperator, ΔTp1, and that in the condenser, ΔTp2, are the most significant unconstrained variables to have a significant effect on the thermal performance of this novel cycle. The thermoeconomic analysis of the cycle (with fixed net power output of 20 MW and plant life of 40 years) shows that the payback period with the revenue from electricity and CO2 mitigation was ∼5.9 years, and would be reduced to ∼3.1 years when there is a market for the refrigeration byproduct. The capital investment cost of the economically optimized plant is estimated to be about $1,000/kWe, and the cost of electricity is estimated to be 0.34–0.37 CNY/kWh (∼0.04 $/kWh). These values are much lower than those of conventional coal power plants being installed at this time in China, which, in contrast to COOLCEP-S, do produce CO2 emissions at that.


2020 ◽  
Vol 10 (21) ◽  
pp. 7600
Author(s):  
Oleg Marchenko ◽  
Sergei Solomin ◽  
Alexander Kozlov ◽  
Vitaly Shamanskiy ◽  
Igor Donskoy

The aim of this work is to assess the effectiveness of biomass gasification power plants in Russia (Irkutsk region) and compare them with other types of electricity and heat cogeneration systems. Biomass, which is waste from logging and wood processing, is considered as fuel for gasification plants. As a criterion, the cost of energy is used. Analytical relations are obtained for the cost of electric energy at a given cost of thermal energy and vice versa, thermal energy at a given cost of electric energy. These relationships are applied to assess the economic efficiency and compare small-power plants (up to 200–500 kW) such as mini-combined heat and power (CHP) on fuel chips and fuel pellets, coal-fired CHP and gas and liquid fuel power plants (gas-piston and diesel power plants). The latter are equipped with heat recovery boilers and supply consumers with heat and the electric power simultaneously. The calculation results show that the cost of electricity when using wood fuel is significantly less than the cost of electricity from a diesel power plant due to the use of cheaper fuel. In this regard, for autonomous energy systems of small power, especially near logging points, energy supply from biomass gasification power plants is a preferable solution than the use of diesel power plants. Wood fired energy cogeneration systems (mini-CHP) can also successfully compete with coal and gas power plants if they have cheap wood fuel at their location. With the introduction of carbon dioxide emissions charges, the use of not only wood chips, but also pellets becomes competitive in comparison with coal and gas.


2016 ◽  
Vol 852 ◽  
pp. 575-581
Author(s):  
Adapala Bharathkumar ◽  
M.S. Alphin ◽  
M. Selvaraj

This paper is regarding the reduction in the cost of electricity generation. This is achieved by using the proposed new mechanics/mechanism/machines as an intermediate, in the process of converting the source energy (Both Conventional Sources of Energy and Non-Conventional Sources of Energy, mainly solar energy and thermal energy from waste or the electricity itself) to electrical energy at truncated charge.


2018 ◽  
Vol 49 ◽  
pp. 00111 ◽  
Author(s):  
Ilona Szefer

Buildings consume over 40 % [1] of the yearly demand for energy (in IEA member countries). Therefore, it is important to take this fact into account in the designing process - not only in terms of potential savings but also from the point of view of energy acquisition. That is why the external building finishing has an important influence on the energy balance as it may save thermal energy and convert sunlight directly into electricity. It is generally believed that the façade is the showcase of the building. An increasingly common concept for effective building facades, not only those newly-created but also after refurbishment, is photovoltaic panels. Regenerative energy production and architectural designing possibilities are no longer an obstacle. Due to a growing range of available cell technologies (polycrystalline, monocrystalline, high-efficiency and semitransparent), as well as designs (colors, overprints) and parameters (weight, power), their integration with building envelope is not longer an issue. Contemporary Photovoltiaics are designed and manufactured to meet the requirements of designers, builders, investors and the owners. The multifunctionality allows for energy production, as well as for shading, lighting contron and thermal insulation. Using Photovoltiaic systems eneables to create an unique facade construction as well as design.


2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


2021 ◽  
Vol 677 (3) ◽  
pp. 032087
Author(s):  
G S Kudryashev ◽  
A N Tretyakov ◽  
S V Batishchev ◽  
V A Bochkarev ◽  
V D Ochirov

2021 ◽  
Vol 412 ◽  
pp. 128612
Author(s):  
Himadri Rajput ◽  
Eilhann E. Kwon ◽  
Sherif A. Younis ◽  
Seunghyun Weon ◽  
Tae Hwa Jeon ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Muhammad Ashar Naveed ◽  
Muhammad Afnan Ansari ◽  
Inki Kim ◽  
Trevon Badloe ◽  
Joohoon Kim ◽  
...  

AbstractHelicity-multiplexed metasurfaces based on symmetric spin–orbit interactions (SOIs) have practical limits because they cannot provide central-symmetric holographic imaging. Asymmetric SOIs can effectively address such limitations, with several exciting applications in various fields ranging from asymmetric data inscription in communications to dual side displays in smart mobile devices. Low-loss dielectric materials provide an excellent platform for realizing such exotic phenomena efficiently. In this paper, we demonstrate an asymmetric SOI-dependent transmission-type metasurface in the visible domain using hydrogenated amorphous silicon (a-Si:H) nanoresonators. The proposed design approach is equipped with an additional degree of freedom in designing bi-directional helicity-multiplexed metasurfaces by breaking the conventional limit imposed by the symmetric SOI in half employment of metasurfaces for one circular handedness. Two on-axis, distinct wavefronts are produced with high transmission efficiencies, demonstrating the concept of asymmetric wavefront generation in two antiparallel directions. Additionally, the CMOS compatibility of a-Si:H makes it a cost-effective alternative to gallium nitride (GaN) and titanium dioxide (TiO2) for visible light. The cost-effective fabrication and simplicity of the proposed design technique provide an excellent candidate for high-efficiency, multifunctional, and chip-integrated demonstration of various phenomena.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 440
Author(s):  
Yuan Deng ◽  
Shi-Qin Li ◽  
Qian Yang ◽  
Zhi-Wang Luo ◽  
He-Lou Xie

Smart windows can dynamically and adaptively adjust the light transmittance in non-energy or low-energy ways to maintain a comfortable ambient temperature, which are conducive to efficient use of energy. This work proposes a liquid crystal (LC) smart window with highly efficient near-infrared (NIR) response using carbon nanotubes grafted by biphenyl LC polymer brush (CNT-PDB) as the orientation layer. The resultant CNT-PDB polymer brush can provide the vertical orientation of LC molecules to maintain the initial transparency. At the same time, the smart window shows a rapid response to NIR light, which can quickly adjust the light transmittance to prevent sunlight from entering the room. Different from common doping systems, this method avoids the problem of poor compatibility between the LC host and photothermal conversion materials, which is beneficial for improving the durability of the device.


Sign in / Sign up

Export Citation Format

Share Document