New Mechanism to Improve the Competence of Power Generation

2016 ◽  
Vol 852 ◽  
pp. 575-581
Author(s):  
Adapala Bharathkumar ◽  
M.S. Alphin ◽  
M. Selvaraj

This paper is regarding the reduction in the cost of electricity generation. This is achieved by using the proposed new mechanics/mechanism/machines as an intermediate, in the process of converting the source energy (Both Conventional Sources of Energy and Non-Conventional Sources of Energy, mainly solar energy and thermal energy from waste or the electricity itself) to electrical energy at truncated charge.

2015 ◽  
Vol 5 (1) ◽  
pp. 4 ◽  
Author(s):  
Clement Ehimika Ohireime Onime ◽  
James Uhomoibhi ◽  
Ermanno Pietrosemoli

It is becoming increasingly important to include information about power generation from renewable energy sources in the training of electrical engineers. Solar energy is arguably the most common renewable energy source in use today. Providing practical hands-on training on solar energy power generation today requires the use of photovoltaic panel devices which are used for transforming solar energy into electrical energy. In many developing countries, practical hands-on training on solar power generation is limited due to the cost of photovoltaic panel devices and so the training consists of theoretical and tutorial classes sometimes supported by remote and virtual laboratories. This paper presents an augmented virtuality tool where real-time information from a mobile device’s sensors is used directly within a virtual or computer generated environment. The tool provides a practical context for hands-on tutorial exercises on solar energy power generation.


2012 ◽  
Vol 608-609 ◽  
pp. 65-69
Author(s):  
Xiao Fan Yang ◽  
Zhi Long Xu ◽  
Chao Li ◽  
Zhong Ming Huang

As the development trend of solar energy, which is a green way of energy utilization, photovoltaic power generation has been a research hotspot of solar energy utilization technologies. Using the concentrating and tracking technology to increase the illumination intensity, and obtain more electrical energy, that will reduce the cost of the photovoltaic power generation system sharply. A kind of steric and multilevel concentrator for photovoltaic generation is introduced in this paper, whose concentration ratio is 3. The operating factor of plane mirrors and performance price ratio of the system is increased for optimizing the condensation parameters and structure of the concentrator.


2021 ◽  
Vol 29 (2) ◽  
pp. 359-383
Author(s):  
Anatoly P. Dzyuba

Reducing the cost of electricity consumption by industrial enterprises is the most important area of increasing the operational efficiency of their activities. The article is devoted to the issue of reducing the cost of paying for the service component of the transport component of purchased electrical energy from industrial enterprises that have technological connection to the electrical networks of electricity producers. The article makes an empirical study of the features of the pricing of payment for the services of the transport component of purchased electrical energy for industrial enterprises connected to the electric grids of electricity producers with the identification of factors influencing the overestimation of the cost of paid electricity, and calculating such overestimations using the example of a typical schedule of electricity consumption of a machinebuilding enterprise for various regions Russia. On the basis of the developed author's indicators (tariff coefficient for electricity transportation by the level of GNP, index of tariff coefficient for electricity transportation, weighted average price for electricity transportation, index of weighted average price for electricity transportation, integral index of efficiency of GNP tariffs) study of the effectiveness of the application of tariffs for the transport of electricity for industrial enterprises connected to the electric networks of electricity producers. Based on the calculated indicators, the article groups the regions into three main groups, with the development of recommendations for managing the cost of purchasing electricity by the component of the cost of the transport component of purchased electricity in each group. As the most optimal option for reducing the cost of electricity transportation, the author proposes the introduction of demand management for electricity consumption, which will reduce the costs of industrial enterprises that pay for the transport component of purchased electricity at unfavorable tariff configurations.


2021 ◽  
Author(s):  
Blanka Bartok

<p>As solar energy share is showing a significant growth in the European electricity generation system, assessments regarding long-term variation of this variable related to climate change are becoming more and more relevant for this sector. Several studies analysed the impact of climate change on the solar energy sector in Europe (Jerez et al, 2015) finding light impact (-14%; +2%) in terms of mean surface solar radiation. The present study focuses on extreme values, namely on the distribution of low surface solar radiation (overcast situation) and high surface solar radiation (clear sky situation), since the frequencies of these situations have high impact on electricity generation.</p><p>The study considers 11 high-resolution (0.11 deg) bias-corrected climate projections from the EURO-CORDEX ensemble with 5 Global Climate Models (GCMs) downscaled by 6 Regional Climate Models (RCMs).</p><p>Changes in extreme surface solar radiation frequencies show different regional patterns over Europe.</p><p>The study also includes a case study determining the changes in solar power generation induced by the extreme situations.</p><p> </p><p> </p><p>Jerez et al (2015): The impact of climate change on photovoltaic power generation in Europe, Nature Communications 6(1):10014, 10.1038/ncomms10014</p><p> </p>


Author(s):  
Yuliia Daus ◽  
Valeriy Kharchenko ◽  
Igor Viktorovich Yudaev ◽  
Vera Dyachenko ◽  
Shavkat Klychev

The object of research in the chapter is the solar power plant as the source of additional economically expedient power supply of the electrical energy consumer. The purpose of this research is to analyze the options for the layout of solar power plant, taking into account the solar energy potential of the district, the design features of the proposed location, the load curve of the consumer, and the cost of the generated electrical energy. The chapter presents the results of calculation and selection of the parameters of solar power plant elements on the roof of the consumer's production building. The chapter presents the results of research of the dependence of the cost of the electricity generated by the solar power plant on the number of installed panels, which in order to increase the realized solar energy potential of the district also allows adding photoelectric modules and accumulating devices in the layout of the operating station at tariff growth. The chapter presents the results of researching these areas, that are conducted by the authors and which are completely original.


MRS Advances ◽  
2018 ◽  
Vol 4 (15) ◽  
pp. 851-855 ◽  
Author(s):  
Robert E. Peale ◽  
Seth Calhoun ◽  
Nagendra Dhakal ◽  
Isaiah O. Oladeji ◽  
Francisco J. González

AbstractThermoelectric (TE) thin films have promise for harvesting electrical energy from waste heat. We demonstrate TE materials and thermocouples deposited by aqueous spray deposition on glass. The n-type material was CdO doped with Mn and Sn. Two p-type materials were investigated, namely PbS with co-growth of CdS and doped with Na and Na2CoO4. Seebeck coefficients, resistivity, and power generation for thermocouples were characterized.


2015 ◽  
Vol 730 ◽  
pp. 173-177
Author(s):  
Yu Wen Tang

Solar energy is an inexhaustible and renewable energy without environmental pollution. Solar energy can be used in three kinds of forms: solar thermal energy, photochemical conversion and photovoltaic power generation. Among these, the final form of photovoltaic power generation is electricity which can be transported, applied and stored conveniently. On the basis of photovoltaic effect, solar cell is developed as a new technology to convert light energy into electrical energy using semiconductor. Up to now the two key problems of the development of solar cells are how to improve the conversion efficiency and reduce cost. Therefore, the material and production technology used for solar cells are discussed based on improving conversion efficiency in this article.


Author(s):  
Chigbo A. Mgbemene ◽  
John Duffy ◽  
Hongwei Sun ◽  
Samuel O. Onyegegbu

Generating electricity from the sun using a combination of a compound parabolic concentrator (CPC) and a thermoelectric module (TEM) has been studied. The system was modeled, analyzed and tested. The model equations and the methodology used for the demonstration are presented and experimentally validated. The experimental setup comprised a manually fabricated CPC placed on a commercially available TEM. The results showed that the combination can generate and sustain enough power for a small appliance. It was also shown that there is enough dissipated heat from the system which could be harnessed for additional uses. The cost is still high, about $35/Wp, but if credit is given for the thermal energy the initial cost goes down.


Author(s):  
P. J. Dechamps

Natural gas fired combined cycle power plants now take a substantial share of the power generation market, mainly because they can be delivering power with a remarkable efficiency shortly after the decision to install is taken, and because they are a relatively low capital cost option. The power generation markets becoming more and more competitive in terms of the cost of electricity, the trend is to go for high performance equipments, notably as far as the gas turbine and the heat recovery steam generator are concerned. The heat recovery steam generator is the essential link in the combined cycle plant, and should be optimized with respect to the cost of electricity. This asks for a techno-economic optimization with an objective function which comprises both the plant efficiency and the initial investment. This paper applies on an example the incremental cost method, which allows to optimize parameters like the pinch points and the superheat temperatures. The influence of the plant load duty on this optimization is emphasized. This is essential, because the load factor will not usually remain constant during the plant life-time. The example which is presented shows the influence of the load factor, which is important, as the plant goes down in merit order with time, following the introduction of more modern, more efficient power plants on the same grid.


2012 ◽  
Vol 195 ◽  
pp. 293-296 ◽  
Author(s):  
Kurt Wostyn ◽  
Wouter Baekelant ◽  
Jens Rip ◽  
Michael Haslinger ◽  
Karine Kenis ◽  
...  

The cumulative installed solar power generation has been rising exponentially over the past decade. This has lead to a concomitant rise in production capabilities, leading eventually to excess production capabilities and rapid price declines per unit. In order to compete with the standard electricity generation the cost of solar panel production and installation needs to decrease even further. At the same time the solar panel and cell makers need to be able to keep a healthy margin. A crucial element in this exercise is a close control on the Cost of Ownership (CoO) of a solar cell / panel fabrication site.


Sign in / Sign up

Export Citation Format

Share Document