Fog Computing Qos Review and Open Challenges

Author(s):  
R. Babu ◽  
K. Jayashree ◽  
R. Abirami

Internet of Things (IoT) enables inters connectivity among devices and platforms. IoT devices such as sensors, or embedded systems offer computational, storage, and networking resources and the existence of these resources permits to move the execution of IoT applications to the edge of the network and it is known as fog computing. It is able to handle billions of Internet-connected devices and is well situated for real-time big data analytics and provides advantages in advertising and personal computing. The main issues in fog computing includes fog networking, QoS, interfacing and programming model, computation offloading, accounting, billing and monitoring, provisioning and resource management, security and privacy. A particular research challenge is the Quality of Service metric for fog services. Thus, this paper gives a survey of cloud computing, discusses the QoS metrics, and the future research directions in fog computing.

2018 ◽  
Vol 1 (2) ◽  
pp. 109-118 ◽  
Author(s):  
R. Babu ◽  
K. Jayashree ◽  
R. Abirami

Internet of Things (IoT) enables inters connectivity among devices and platforms. IoT devices such as sensors, or embedded systems offer computational, storage, and networking resources and the existence of these resources permits to move the execution of IoT applications to the edge of the network and it is known as fog computing. It is able to handle billions of Internet-connected devices and is well situated for real-time big data analytics and provides advantages in advertising and personal computing. The main issues in fog computing includes fog networking, QoS, interfacing and programming model, computation offloading, accounting, billing and monitoring, provisioning and resource management, security and privacy. A particular research challenge is the Quality of Service metric for fog services. Thus, this paper gives a survey of cloud computing, discusses the QoS metrics, and the future research directions in fog computing.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 309 ◽  
Author(s):  
Hind Bangui ◽  
Said Rakrak ◽  
Said Raghay ◽  
Barbora Buhnova

Cloud computing has significantly enhanced the growth of the Internet of Things (IoT) by ensuring and supporting the Quality of Service (QoS) of IoT applications. However, cloud services are still far from IoT devices. Notably, the transmission of IoT data experiences network issues, such as high latency. In this case, the cloud platforms cannot satisfy the IoT applications that require real-time response. Yet, the location of cloud services is one of the challenges encountered in the evolution of the IoT paradigm. Recently, edge cloud computing has been proposed to bring cloud services closer to the IoT end-users, becoming a promising paradigm whose pitfalls and challenges are not yet well understood. This paper aims at presenting the leading-edge computing concerning the movement of services from centralized cloud platforms to decentralized platforms, and examines the issues and challenges introduced by these highly distributed environments, to support engineers and researchers who might benefit from this transition.


Author(s):  
Pallavi Mishra

This chapter illustrates that there are many challenging problems in the modern society such as environment pollution, radiation pollution, high demand, and low supply of energy. Such issues need modern solutions to tackle them. In this context, green internet of things (IoT) solutions have come up with flying colors. As there is a constant need of the energy by the interconnected IoT devices to perceive, fetch, and transmit the real-time information, the energy demands remain high. Green IoT is an emerging concept to meet this problem by framing the energy-efficient policies so as to provide a simpler yet better solution to enhance the quality of the current practices. In this chapter, different practical aspects of green IoT and narrowband IoT (NBIoT) deployment have been presented. NBIoT narrowband signals are used in low data rates are transmitted and have a widerange of reception because narrow filters cancel out unwanted wideband noise. NBIoT has several advantages over LTE-M due to lower device cost, longer battery life and extended coverage. Finally, some future research directions have been addressed.


2018 ◽  
Vol 2 (2) ◽  
pp. 10 ◽  
Author(s):  
Hany Atlam ◽  
Robert Walters ◽  
Gary Wills

With the rapid growth of Internet of Things (IoT) applications, the classic centralized cloud computing paradigm faces several challenges such as high latency, low capacity and network failure. To address these challenges, fog computing brings the cloud closer to IoT devices. The fog provides IoT data processing and storage locally at IoT devices instead of sending them to the cloud. In contrast to the cloud, the fog provides services with faster response and greater quality. Therefore, fog computing may be considered the best choice to enable the IoT to provide efficient and secure services for many IoT users. This paper presents the state-of-the-art of fog computing and its integration with the IoT by highlighting the benefits and implementation challenges. This review will also focus on the architecture of the fog and emerging IoT applications that will be improved by using the fog model. Finally, open issues and future research directions regarding fog computing and the IoT are discussed.


2022 ◽  
pp. 148-175
Author(s):  
Anish Khan ◽  
Dragan Peraković

The internet of things is a cutting-edge technology that is vulnerable to all sorts of fictitious solutions. As a new phase of computing emerges in the digital world, it intends to produce a huge number of smart gadgets that can host a wide range of applications and operations. IoT gadgets are a perfect target for cyber assaults because of their wide dispersion, availability/accessibility, and top-notch computing power. Furthermore, as numerous IoT devices gather and investigate private data, they become a gold mine for hostile actors. Hence, the matter of fact is that security, particularly the potential to diagnose compromised nodes, as well as the collection and preservation of testimony of an attack or illegal activity, have become top priorities. This chapter delves into the timeline and the most challenging security and privacy issues that exist in the present scenario. In addition to this, some open issues and future research directions are also discussed.


Author(s):  
Vighnesh Srinivasa Balaji

In recent times, the number of internet of things (IoT) devices/sensors increased tremendously. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named fog computing has been introduced. In this chapter, the authors will introduce fog computing, its difference in comparison to cloud computing, and issues related to fog. Among the three issues (i.e. service, structural, and security issues), this chapter scrutinizes and comprehensively discusses the service and structural issues also providing the service level objectives of the fog. They next provide various algorithms for computing in fog, the challenges faced, and future research directions. Among the various uses of fog, two scenarios are put to use.


2021 ◽  
Vol 2 (3) ◽  
pp. 1-44
Author(s):  
Akm Iqtidar Newaz ◽  
Amit Kumar Sikder ◽  
Mohammad Ashiqur Rahman ◽  
A. Selcuk Uluagac

Recent advancements in computing systems and wireless communications have made healthcare systems more efficient than before. Modern healthcare devices can monitor and manage different health conditions of patients automatically without any manual intervention from medical professionals. Additionally, the use of implantable medical devices, body area networks, and Internet of Things technologies in healthcare systems improve the overall patient monitoring and treatment process. However, these systems are complex in software and hardware, and optimizing between security, privacy, and treatment is crucial for healthcare systems because any security or privacy violation can lead to severe effects on patients’ treatments and overall health conditions. Indeed, the healthcare domain is increasingly facing security challenges and threats due to numerous design flaws and the lack of proper security measures in healthcare devices and applications. In this article, we explore various security and privacy threats to healthcare systems and discuss the consequences of these threats. We present a detailed survey of different potential attacks and discuss their impacts. Furthermore, we review the existing security measures proposed for healthcare systems and discuss their limitations. Finally, we conclude the article with future research directions toward securing healthcare systems against common vulnerabilities.


2021 ◽  
Vol 13 (8) ◽  
pp. 4206
Author(s):  
Jamilya Nurgazina ◽  
Udsanee Pakdeetrakulwong ◽  
Thomas Moser ◽  
Gerald Reiner

The lack of transparency and traceability in food supply chains (FSCs) is raising concerns among consumers and stakeholders about food information credibility, food quality, and safety. Insufficient records, a lack of digitalization and standardization of processes, and information exchange are some of the most critical challenges, which can be tackled with disruptive technologies, such as the Internet of Things (IoT), blockchain, and distributed ledger technologies (DLTs). Studies provide evidence that novel technological and sustainable practices in FSCs are necessary. This paper aims to describe current practical applications of DLTs and IoT in FSCs, investigating the challenges of implementation, and potentials for future research directions, thus contributing to achievement of the United Nations’ Sustainable Development Goals (SDGs). Within a systematic literature review, the content of 69 academic publications was analyzed, describing aspects of implementation and measures to address the challenges of scalability, security, and privacy of DLT, and IoT solutions. The challenges of high costs, standardization, regulation, interoperability, and energy consumption of DLT solutions were also classified as highly relevant, but were not widely addressed in literature. The application of DLTs in FSCs can potentially contribute to 6 strategic SDGs, providing synergies and possibilities for more sustainable, traceable, and transparent FSCs.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jessica Beltrán ◽  
Mireya S. García-Vázquez ◽  
Jenny Benois-Pineau ◽  
Luis Miguel Gutierrez-Robledo ◽  
Jean-François Dartigues

An opportune early diagnosis of Alzheimer’s disease (AD) would help to overcome symptoms and improve the quality of life for AD patients. Research studies have identified early manifestations of AD that occur years before the diagnosis. For instance, eye movements of people with AD in different tasks differ from eye movements of control subjects. In this review, we present a summary and evolution of research approaches that use eye tracking technology and computational analysis to measure and compare eye movements under different tasks and experiments. Furthermore, this review is targeted to the feasibility of pioneer work on developing computational tools and techniques to analyze eye movements under naturalistic scenarios. We describe the progress in technology that can enhance the analysis of eye movements everywhere while subjects perform their daily activities and give future research directions to develop tools to support early AD diagnosis through analysis of eye movements.


2022 ◽  
Vol 54 (7) ◽  
pp. 1-34
Author(s):  
Sophie Dramé-Maigné ◽  
Maryline Laurent ◽  
Laurent Castillo ◽  
Hervé Ganem

The Internet of Things is taking hold in our everyday life. Regrettably, the security of IoT devices is often being overlooked. Among the vast array of security issues plaguing the emerging IoT, we decide to focus on access control, as privacy, trust, and other security properties cannot be achieved without controlled access. This article classifies IoT access control solutions from the literature according to their architecture (e.g., centralized, hierarchical, federated, distributed) and examines the suitability of each one for access control purposes. Our analysis concludes that important properties such as auditability and revocation are missing from many proposals while hierarchical and federated architectures are neglected by the community. Finally, we provide an architecture-based taxonomy and future research directions: a focus on hybrid architectures, usability, flexibility, privacy, and revocation schemes in serverless authorization.


Sign in / Sign up

Export Citation Format

Share Document