Digital Twin-Driven Condition-Based Maintenance

2022 ◽  
pp. 109-136
Author(s):  
Adolfo Crespo del Castillo ◽  
Marco Macchi ◽  
Laura Cattaneo

The world is witnessing an all-level digitalization that guides the industry and business to a restructuration in order to adapt to the new requirements of the surrounding environment. That change also concerns the labour of the technical professionals and their formation. As a consequence of this deep consciousness-raising, this chapter will investigate and develop simulation models based on the current digitalization. The aim of this chapter is the exposition of a real case development of “digital twin” models framed as part of the condition-based maintenance paradigm to improve real-time assets operation and maintenance. This model contributes by providing real-time results that could turn into a basis for the industrial management decisions and place them in the Industry 4.0 paradigm environment.

Buildings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 151
Author(s):  
Samad M. E. Sepasgozar

Construction projects and cities account for over 50% of carbon emissions and energy consumption. Industry 4.0 and digital transformation may increase productivity and reduce energy consumption. A digital twin (DT) is a key enabler in implementing Industry 4.0 in the areas of construction and smart cities. It is an emerging technology that connects different objects by utilising the advanced Internet of Things (IoT). As a technology, it is in high demand in various industries, and its literature is growing exponentially. Previous digital modeling practices, the use of data acquisition tools, human–computer–machine interfaces, programmable cities, and infrastructure, as well as Building Information Modeling (BIM), have provided digital data for construction, monitoring, or controlling physical objects. However, a DT is supposed to offer much more than digital representation. Characteristics such as bi-directional data exchange and real-time self-management (e.g., self-awareness or self-optimisation) distinguish a DT from other information modeling systems. The need to develop and implement DT is rising because it could be a core technology in many industrial sectors post-COVID-19. This paper aims to clarify the DT concept and differentiate it from other advanced 3D modeling technologies, digital shadows, and information systems. It also intends to review the state of play in DT development and offer research directions for future investigation. It recommends the development of DT applications that offer rapid and accurate data analysis platforms for real-time decisions, self-operation, and remote supervision requirements post-COVID-19. The discussion in this paper mainly focuses on the Smart City, Engineering and Construction (SCEC) sectors.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5031
Author(s):  
Javier Villalba-Diez ◽  
Miguel Gutierrez ◽  
Mercedes Grijalvo Martín ◽  
Tomas Sterkenburgh ◽  
Juan Carlos Losada ◽  
...  

With the advent of the Industry 4.0 paradigm, the possibilities of controlling manufacturing processes through the information provided by a network of sensors connected to work centers have expanded. Real-time monitoring of each parameter makes it possible to determine whether the values yielded by the corresponding sensor are in their normal operating range. In the interplay of the multitude of parameters, deterministic analysis quickly becomes intractable and one enters the realm of “uncertain knowledge”. Bayesian decision networks are a recognized tool to control the effects of conditional probabilities in such systems. However, determining whether a manufacturing process is out of range requires significant computation time for a decision network, thus delaying the triggering of a malfunction alarm. From its origins, JIDOKA was conceived as a means to provide mechanisms to facilitate real-time identification of malfunctions in any step of the process, so that the production line could be stopped, the cause of the disruption identified for resolution, and ultimately the number of defective parts minimized. Our hypothesis is that we can model the internal sensor network of a computer numerical control (CNC) machine with quantum simulations that show better performance than classical models based on decision networks. We show a successful test of our hypothesis by implementing a quantum digital twin that allows for the integration of quantum computing and Industry 4.0. This quantum digital twin simulates the intricate sensor network within a machine and permits, due to its high computational performance, to apply JIDOKA in real time within manufacturing processes.


2021 ◽  
Vol 129 ◽  
pp. 04003
Author(s):  
Elvira Nica ◽  
Gheorghe H. Popescu ◽  
George Lăzăroiu

Research background: The aim of this paper is to synthesize and analyze existing evidence on artificial intelligence-based decision-making algorithms, industrial big data, and Internet of Things sensing networks in digital twin-driven smart manufacturing. Purpose of the article: Using and replicating data from Altair, Catapult, Deloitte, DHL, GAVS, PwC, and ZDNet we performed analyses and made estimates regarding cyber-physical system-based real-time monitoring, product decision-making information systems, and artificial intelligence data-driven Internet of Things systems in digital twin-based cyber-physical production systems. Methods: From the completed surveys, we calculated descriptive statistics of compiled data when appropriate. The data was weighted in a multistep process that accounts for multiple stages of sampling and nonresponse that occur at different points in the survey process. The precision of the online polls was measured using a Bayesian credibility interval. To ensure high-quality data, data quality checks were performed to identify any respondents showing clear patterns of satisficing. Test data was populated and analyzed in SPSS to ensure the logic and randomizations were working as intended before launching the survey. An Internet-based survey software program was utilized for the delivery and collection of responses. The sample weighting was accomplished using an iterative proportional fitting process that simultaneously balanced the distributions of all variables. The interviews were conducted online and data were weighted by five variables (age, race/ethnicity, gender, education, and geographic region) using the Census Bureau’s American Community Survey to reflect reliably and accurately the demographic composition of the United States. Confirmatory factor analysis was employed to test for the reliability and validity of measurement instruments. Findings & Value added: The way Internet of Things-based decision support systems, artificial intelligence-driven big data analytics, and robotic wireless sensor networks configure digital twin-driven smart manufacturing and cyber-physical production systems in sustainable Industry 4.0.


2020 ◽  
Vol 10 (1) ◽  
pp. 377-385 ◽  
Author(s):  
Antti Liljaniemi ◽  
Heikki Paavilainen

AbstractDigital Twin (DT) technology is an essential technology related to the Industry 4.0. In engineering education, it is important that the curricula are kept up-to-date. By adopting new digital technologies, such as DT, we can provide new knowledge for students, teachers, and companies. The main aim of this research was to create a course concept to research benefits and barriers of DT technology in engineering education. The research confirmed earlier findings concerning digitalization in engineering education. DT technology can increase motivation for studying and improve learning when applied correctly.


Sign in / Sign up

Export Citation Format

Share Document