Climate Integration in Sustainable Urban Planning

2022 ◽  
pp. 152-173
Author(s):  
Asia Lachir

Currently, cities are home to more than half of the world's population. The increasing urbanization rates create an unprecedented urban sprawl that worsens the urban climate situation. Urban areas modify their local climate and face the consequent urban climate impacts, which are particularly exacerbated by global climate change. This chapter shares scientific knowledge on how cities affect their climate and how urban spatial planning can mitigate the negative impacts of urban climate. Focus is given on the urban heat island, the most documented aspect of urban climate, directly linked to city spatial characteristics and functions. This phenomenon is explained, and tools and methods to assess it and mitigate its intensity are introduced in an attempt to help urban planners and designers to use climatic knowledge in urban planning to build more sustainable and climate-resilient cities.

Author(s):  
Alice C. Hill ◽  
Leonardo Martinez-Diaz

Even under the most optimistic scenarios, significant global climate change is now inevitable. Although we cannot tell with certainty how much average global temperatures will rise, we do know that the warming we have experienced to date has already caused significant losses, and that the failure to prepare for the consequences of further warming may prove to be staggering. This book does not dwell on overhyped descriptions of apocalyptic climate scenarios, nor does it travel down well-trodden paths surrounding the politics of reducing carbon emissions. Instead, it starts with two central facts: there will be future climate impacts, and we can make changes now to buffer their effects. While squarely confronting the scale of the risks we face, this pragmatic guide focuses on solutions—some gradual and some more revolutionary—currently being deployed around the globe. Each chapter presents a thematic lesson for decision-makers and engaged citizens to consider, outlining replicable successes and identifying provocative recommendations to strengthen climate resilience. Between discussions of ideas as wide-ranging as managed retreat from coastal hot zones to biological solutions for resurgent climate-related disease threats, the authors draw on their personal experiences to tell behind-the-scenes stories of what it really takes to advance progress on these issues. The narrative is dotted with stories of on-the-ground citizenry, from small-town mayors and bankers to generals and engineers, who are chipping away at financial disincentives and bureaucratic hurdles to prepare for life on a warmer planet.


2021 ◽  
Author(s):  
Arianna Valmassoi ◽  
Jan D. Keller ◽  
Rita Glowienka-Hense

<p>Understanding the impact of urban environments on the local climate has been a crucial topic in recent years. Changes in the cities structure are expected due to the ongoing urbanization trends and climate-aware mitigation planning. These policy implementations are expected to affect the local urban surface and its interaction with the climate system. Here, we are interested in investigating these impacts coupled to a heatwave condition, due to its adverse impact on human health. </p> <p>In the presented work, we investigate the multi-model response to different urbanization and urban greening scenarios. We employ two NWP models at the 2.1 km convection-permitting resolution: ICON-LAM (ICOsahedral Nonhydrostatic Model in Limited Area Mode)  and WRF-ARW (Weather Research and Forecasting Model). Our one-month experiments comprise the 2019 ``record-breaking'' heatwave in Western Europe and they are all a downscaling of ICON-EU (6.5km resolution).</p> <p>The urban policy scenarios are built from the CORINE land use dataset and they include two urbanization and two urban greening settings, for each model. Urbanization is represented as a sprawl of the main urban areas within the domain towards the natural surrounding areas. To increase the urban green fraction within the main cities, we increase the number of green areas within each city.</p> <p>Our analysis shows the multi-model comparison of the effects of the mentioned urban policies on the urban heat island (UHI) under heatwave conditions. Further, we quantify the effects of urban greening as an efficient tool to mitigate expected climate impacts in terms of the Discomfort Index, and not just for the UHI.<br />Further, we evaluate the similarities and dissimilarities between the two models in terms of multiple correlation decomposition accordingly to Glowienka-Hense et al. 2020.</p>


Urban Health ◽  
2019 ◽  
pp. 129-138
Author(s):  
Patrick L. Kinney

Global climate change represents one of the sentinel changes the world is facing and that will threaten population health in this century. In the context of urban health, climate change threatens to increase urban heat island effects, to change exposure to pollution, and to increase urban residents’ risk of exposure to natural disasters, among other phenomena. And yet urban innovation is central to the longer term solution to climate change from the development of innovative approaches that reduce cities’ carbon footprint to initiatives that increase urban resilience in the face of climate change threats. This chapter discusses the threat that climate change poses for urban populations and potential approaches that can mitigate this challenge toward improving urban health.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 840
Author(s):  
Cláudia Reis ◽  
António Lopes ◽  
Ezequiel Correia ◽  
Marcelo Fragoso

Urbanized hot spots incorporate a great diversity of microclimates dependent, among other factors, on local meteorological conditions. Until today, detailed analysis of the combination of climatic variables at local scale are very scarce in urban areas. Thus, there is an urgent need to produce a Local Weather Type (LWT) classification that allows to exhaustively distinguish different urban thermal patterns. In this study, hourly data from air temperature, wind speed and direction, accumulated precipitation, cloud cover and specific humidity (2009–2018) were integrated in a cluster analysis (K-means) in order to produce a LWT classification for Lisbon’s urban area. This dataset was divided by daytime and nighttime and thermal periods, which were generated considering the annual cycle of air temperatures. Therefore, eight LWT sets were generated. Results show that N and NW LWT are quite frequent throughout the year, with a moderate speed (daily average of 4–6 m/s). In contrast, the frequency of rainy LWT is considerably lower, especially in summer (below 10%). Moreover, during this season the moisture content of the air masses is higher, particularly at night. This methodology will allow deepening the knowledge about the multiple Urban Heat Island (UHI) patterns in Lisbon.


2020 ◽  
Vol 12 (4) ◽  
pp. 1501
Author(s):  
Sébastien Dujardin ◽  
Damien Jacques ◽  
Jessica Steele ◽  
Catherine Linard

Climate change places cities at increasing risk and poses a serious challenge for adaptation. As a response, novel sources of data combined with data-driven logics and advanced spatial modelling techniques have the potential for transformative change in the role of information in urban planning. However, little practical guidance exists on the potential opportunities offered by mobile phone data for enhancing adaptive capacities in urban areas. Building upon a review of spatial studies mobilizing mobile phone data, this paper explores the opportunities offered by such digital information for providing spatially-explicit assessments of urban vulnerability, and shows the ways these can help developing more dynamic strategies and tools for urban planning and disaster risk management. Finally, building upon the limitations of mobile phone data analysis, it discusses the key urban governance challenges that need to be addressed for supporting the emergence of transformative change in current planning frameworks.


2012 ◽  
Vol 51 (8) ◽  
pp. 1441-1454 ◽  
Author(s):  
Sachiho A. Adachi ◽  
Fujio Kimura ◽  
Hiroyuki Kusaka ◽  
Tomoshige Inoue ◽  
Hiroaki Ueda

AbstractIn this study, the impact of global climate change and anticipated urbanization over the next 70 years is estimated with regard to the summertime local climate in the Tokyo metropolitan area (TMA), whose population is already near its peak now. First, five climate projections for the 2070s calculated with the aid of general circulation models (GCMs) are used for dynamical downscaling experiments to evaluate the impact of global climate changes using a regional climate model. Second, the sensitivity of future urbanization until the 2070s is examined assuming a simple developing urban scenario for the TMA. These two sensitivity analyses indicate that the increase in the surface air temperature from the 1990s to the 2070s is about 2.0°C as a result of global climate changes under the A1B scenario in the Intergovernmental Panel on Climate Change’s Special Report on Emissions Scenarios (SRES) and about 0.5°C as a result of urbanization. Considering the current urban heat island intensity (UHII) of 1.0°C, the possible UHII in the future reaches an average of 1.5°C in the TMA. This means that the mitigation of the UHII should be one of the ways to adapt to a local temperature increase caused by changes in the future global climate. In addition, the estimation of temperature increase due to global climate change has an uncertainty of about 2.0°C depending on the GCM projection, suggesting that the local climate should be projected on the basis of multiple GCM projections.


Sign in / Sign up

Export Citation Format

Share Document