Efficient Routing Protocol for Location Privacy Preserving in Internet of Things

Author(s):  
Rajwinder Kaur ◽  
Karan Verma ◽  
Shelendra Kumar Jain ◽  
Nishtha Kesswani

Internet of Things is a norm which has expanded very swiftly with high magnitude of heterogeneity and functionalities. Security and privacy became the prime factors of Internet of Things due to unsecured character of wireless communication. Thus, because of unsecured network, it is easy for invaders to trace and find the position of nodes during communication and leak the information. Issues related to location information may include sharing of information, storage, sensing, and processing which can be used by external entities in different contexts, i.e. contexts can be: technical, legal, and social. These issues make privacy a major concern. Here, the research this article presents notions of existing privacy models and the amplified techniques using a random path. The article then describes possible solutions to preserve the location of nodes with less transmission time. Results of proposed scheme depict effectual behavior of the approach.

2019 ◽  
Vol 13 (1) ◽  
pp. 70-85 ◽  
Author(s):  
Rajwinder Kaur ◽  
Karan Verma ◽  
Shelendra Kumar Jain ◽  
Nishtha Kesswani

Internet of Things is a norm which has expanded very swiftly with high magnitude of heterogeneity and functionalities. Security and privacy became the prime factors of Internet of Things due to unsecured character of wireless communication. Thus, because of unsecured network, it is easy for invaders to trace and find the position of nodes during communication and leak the information. Issues related to location information may include sharing of information, storage, sensing, and processing which can be used by external entities in different contexts, i.e. contexts can be: technical, legal, and social. These issues make privacy a major concern. Here, the research this article presents notions of existing privacy models and the amplified techniques using a random path. The article then describes possible solutions to preserve the location of nodes with less transmission time. Results of proposed scheme depict effectual behavior of the approach.


2022 ◽  
Vol 22 (2) ◽  
pp. 1-20
Author(s):  
Bharat S. Rawal ◽  
Poongodi M. ◽  
Gunasekaran Manogaran ◽  
Mounir Hamdi

Block chain provides an innovative solution to information storage, transaction execution, security, and trust building in an open environment. The block chain is technological progress for cyber security and cryptography, with efficiency-related cases varying in smart grids, smart contracts, over the IoT, etc. The movement to exchange data on a server has massively increased with the introduction of the Internet of Things. Hence, in this research, Splitting of proxy re-encryption method (Split-PRE) has been suggested based on the IoT to improve security and privacy in a private block chain. This study proposes a block chain-based proxy re-encryption program to resolve both the trust and scalability problems and to simplify the transactions. After encryption, the system saves the Internet of Things data in a distributed cloud. The framework offers dynamic, smart contracts between the sensor and the device user without the intervention of a trustworthy third party to exchange the captured IoT data. It uses an efficient proxy re-encryption system, which provides the owner and the person existing in the smart contract to see the data. The experimental outcomes show that the proposed approach enhances the efficiency, security, privacy, and feasibility of the system when compared to other existing methods.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882239 ◽  
Author(s):  
Zhimin Li ◽  
Haoze Lv ◽  
Zhaobin Liu

With the development of Internet of Things, many applications need to use people’s location information, resulting in a large amount of data need to be processed, called big data. In recent years, people propose many methods to protect privacy in the location-based service aspect. However, existing technologies have poor performance in big data area. For instance, sensor equipments such as smart phones with location record function may submit location information anytime and anywhere which may lead to privacy disclosure. Attackers can leverage huge data to achieve useful information. In this article, we propose noise-added selection algorithm, a location privacy protection method that satisfies differential privacy to prevent the data from privacy disclosure by attacker with arbitrary background knowledge. In view of Internet of Things, we maximize the availability of data and algorithm when protecting the information. In detail, we filter real-time location distribution information, use our selection mechanism for comparison and analysis to determine privacy-protected regions, and then perform differential privacy on them. As shown in the theoretical analysis and the experimental results, the proposed method can achieve significant improvements in security, privacy, and complete a perfect balance between privacy protection level and data availability.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-32
Author(s):  
Matthew Bradbury ◽  
Arshad Jhumka ◽  
Carsten Maple

Source Location Privacy (SLP) is an important property for monitoring assets in privacy-critical sensor network and Internet of Things applications. Many SLP-aware routing techniques exist, with most striking a tradeoff between SLP and other key metrics such as energy (due to battery power). Typically, the number of messages sent has been used as a proxy for the energy consumed. Existing work (for SLP against a local attacker) does not consider the impact of sleeping via duty cycling to reduce the energy cost of an SLP-aware routing protocol. Therefore, two main challenges exist: (i) how to achieve a low duty cycle without loss of control messages that configure the SLP protocol and (ii) how to achieve high SLP without requiring a long time spent awake. In this article, we present a novel formalisation of a duty cycling protocol as a transformation process. Using derived transformation rules, we present the first duty cycling protocol for an SLP-aware routing protocol for a local eavesdropping attacker . Simulation results on grids demonstrate a duty cycle of 10%, while only increasing the capture ratio of the source by 3 percentage points, and testbed experiments on FlockLab demonstrate an 80% reduction in the average current draw.


2020 ◽  
Author(s):  
Abhishek Verma ◽  
Virender Ranga

<div>Internet of Things (IoT) is one of the fastest emerging networking paradigms enabling a large number of applications for the benefit of mankind. Advancements in embedded system technology and compressed IPv6 have enabled the support of IP stack in resource constrained heterogeneous smart devices. However, global connectivity and resource constrained characteristics of smart devices have exposed them to different insider and outsider attacks, which put users’ security and privacy at risk. Various risks associated with IoT slow down its growth and become an obstruction in the worldwide adoption of its applications. In RFC 6550, the IPv6 Routing Protocol for Low Power and Lossy Network (RPL) is specified by IETF’s ROLL working group for facilitating efficient routing in 6LoWPAN networks, while considering its limitations. Due to resource constrained nature of nodes in the IoT, RPL is vulnerable to many attacks that consume the node’s resources and degrade the network’s performance. In this paper, we present a study on</div><div>various attacks and their existing defense solutions, particularly to RPL. Open research issues, challenges, and future directions specific to RPL security are also discussed. A taxonomy of RPL attacks, considering the essential attributes like resources, topology, and traffic, is shown for better understanding. In addition, a study of existing cross-layered and RPL specific network layer based defense solutions suggested in the literature is also carried out.</div>


2021 ◽  
Vol 26 (2) ◽  
Author(s):  
Tymofii Vitaliiovych Yakushkin ◽  
Yevhenii Viacheslavovych Kuts ◽  
Roman Dmytrovych Yershov ◽  
Serhii Anatoliiovych Stepenko

Autonomous systems based on the "Internet of Things" paradigm have become widespread. The Internet of Things devices are used for collecting and analyzing data, control electrical systems. The Internet of Things the most common fields of use are smart houses, smart cities, smart traffic, environment monitoring, healthcare etc. With the automation to the degree of autonomy of such processes as cargo delivery and human transportation, the Internet of Things paradigm begins to extend not only to stationary devices, but also to mobile, primarily small unmanned aerial vehicles. UAV can be used not only for civil use but for police or military operations too. This poses a potential threat to skilled criminals such as terrorists, smugglers and drug couriers. There is an urgent problem of secure transmission of data and control signals at distances up to tens of kilometers without loss of communication and the possibility of interception of control. Wireless communication technologies are widely used in all areas of the economy: control systems, environmental safety monitoring, industrial automation, logistics, etc. Wireless networks have many characteristics in common with wireline networks, and therefore, many security issues of wireline networks apply to the wireless environment. Wireless data is easy to intercept by potential eavesdroppers. Issue of security and privacy become more notable with wireless networks. The paper substantiates the transition to cryptographically protected wireless communication channels in autonomous control systems for both fixed and mobile performance. Possible attack vectors in such systems are considered. An analytical review and classification of modern cryptographic protection (encryption) algorithms used at the representative, session and channel levels of communication interfaces together and functional diagrams for some of them are performed. Selected criteria for comparing cryptographic algorithms, which allows you to choose the best depending on the functions performed and the conditions of use of a particular autonomous system.


2020 ◽  
Author(s):  
Abhishek Verma ◽  
Virender Ranga

<div>Internet of Things (IoT) is one of the fastest emerging networking paradigms enabling a large number of applications for the benefit of mankind. Advancements in embedded system technology and compressed IPv6 have enabled the support of IP stack in resource constrained heterogeneous smart devices. However, global connectivity and resource constrained characteristics of smart devices have exposed them to different insider and outsider attacks, which put users’ security and privacy at risk. Various risks associated with IoT slow down its growth and become an obstruction in the worldwide adoption of its applications. In RFC 6550, the IPv6 Routing Protocol for Low Power and Lossy Network (RPL) is specified by IETF’s ROLL working group for facilitating efficient routing in 6LoWPAN networks, while considering its limitations. Due to resource constrained nature of nodes in the IoT, RPL is vulnerable to many attacks that consume the node’s resources and degrade the network’s performance. In this paper, we present a study on</div><div>various attacks and their existing defense solutions, particularly to RPL. Open research issues, challenges, and future directions specific to RPL security are also discussed. A taxonomy of RPL attacks, considering the essential attributes like resources, topology, and traffic, is shown for better understanding. In addition, a study of existing cross-layered and RPL specific network layer based defense solutions suggested in the literature is also carried out.</div>


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Rui Zhu ◽  
Li Xu ◽  
Yali Zeng ◽  
Xun Yi

The database-driven cognitive radio networks (CRNs) are regarded as a promising approach to utilizing limited spectrum resources in large-scale Internet of Things (IoT). However, database-driven CRNs face some security and privacy threats. Firstly, secondary users (SUs) should send identity and location information to the database (DB) to obtain a list of available channels, such that the curious DB might easily misuse and threaten the privacy of SUs. Secondly, malicious SUs might send fake location information to the DB in order to occupy channels with better quantity in advance and so gain benefits. This might also cause serious interference to primary users (PUs). In this paper, we propose a lightweight privacy-preserving location verification protocol to protect the identity and location privacy of each SU and to verify the location of SUs. In the proposed protocol, the SU does not need to provide location information to request an available channel from the DB. Therefore, the DB cannot get the location information of any SU. In the proposed protocol, the base station (BS) selects some SUs as witnesses to generate location proofs for each other in a distributed fashion. This new witness selection mechanism makes the proposed protocol reliable when a malicious SU generates fake location information to cheat the BS and also prevents SU-Witness collusion attacks. The results also show that the proposed protocol can provide strong privacy preservation for SUs and can effectively verify the location of the SUs. The security analysis shows that the proposed protocol can resist various types of attacks. Moreover, compared with previous protocols, the proposed protocol is lightweight because it relies on symmetric cryptography and it is unaffected by the area covered by the DB.


Author(s):  
Uppuluri Sirisha ◽  
G. Lakshme Eswari

This paper briefly introduces Internet of Things(IOT) as a intellectual connectivity among the physical objects or devices which are gaining massive increase in the fields like efficiency, quality of life and business growth. IOT is a global network which is interconnecting around 46 million smart meters in U.S. alone with 1.1 billion data points per day[1]. The total installation base of IOT connecting devices would increase to 75.44 billion globally by 2025 with a increase in growth in business, productivity, government efficiency, lifestyle, etc., This paper familiarizes the serious concern such as effective security and privacy to ensure exact and accurate confidentiality, integrity, authentication access control among the devices.


2020 ◽  
Author(s):  
Vinod Kumar Verma

BACKGROUND COVID- 19 pandemics has affected the life of every human being in this world dramatically. The daily routine of the human has been changed to an uncertain extent. Some of the people are affected by the COVID-19, and some of the people are in fear of this epidemic. This has completely changed the thorough process of the people, and now, they are looking for solutions of this pandemic at different levels of the human addressable areas. These areas include medicine, vaccination, precautions, psychology, technology-assisted solutions like information technology, etc. There is a need to think in the direction of technology compliant solutions in the era of COVID-19 pandemic. OBJECTIVE The objective of this paper is to discuss the existing views and focus on the recommendations for the enhancement in the current situation from COVID-19. METHODS Based on the literature, perceptions, challenges, and viewpoints, the following opinions are suggested to the research community for the prevention and elimination of global pandemic COVID-19. The research community irrespective of the discipline focus on the following: 1. The comprehensive thought process for the designing of the internet of things (IoT) based solutions for healthcare applications used in the prevention from COVID-19. 2. Strategies for restricting outbreak of COVID-19 with the emerging trends in Ehealthcare applications. Which should be the optimal strategy to deal with a global pandemic? 3. Explorations on the data analysis as derived from the advanced data mining and warehousing associated with IoT. Besides, cloud-based technologies can be incorporated for the global spread of healthcare-related information to serve the community of different countries in the world. 4. The most adaptable method and technology can be deployed for the development of innovative solutions for COVID-19 related people like smart, patient-centric healthcare information systems. 5. Implementation of smart solutions like wearable technology for mask and PPE along with their disposal can be considered to deal with a global epidemic like COVID-19. This will lead to the manufacturing and incorporation of wearable technologies in the healthcare sector by industries. 6. A Pervasive thought process can be standardized for dealing with global pandemic like COVID-19. In addition, research measures should be considered for the security and privacy challenges of IoT services carrying healthcare-related information. These areas and directions are diverse but, in parallel, the need for healthy bonding and correlation between the people like researchers and scientists irrespective of their discipline. The discipline may vary from medical, engineering, computing, finance, and management, etc. In addition, standard protocols and interoperability measures can be worked out for the exchange of information in the global pandemic situations. RESULTS Recommendations Discussed CONCLUSIONS In this paper, the opinions have been discussed in the multi-disciplinary areas of research like COVID-19 challenges, medicines and vaccines, precautionary measures, technology assistance, and the Internet of Things. These opinions and discussion serve as an integrated platform for researchers and scientists to think about future perspectives to deal with healthcare-related COVID-19 pandemic situation. This includes the original, significant, and visionary automation based ideas, innovations, scientific designs, and applications focusing on Inter-disciplinary technology compliant solutions like IoT, vaccinations, manufacturing, preventive measures, etc. for the improvement of efficiency and reliability of existing healthcare systems. For the future, there is dire need to strengthen the technology not only in the one area but also for the interdisciplinary areas to recover from the pandemic situation rapidly and serve the community.


Sign in / Sign up

Export Citation Format

Share Document