Feature Selection of Interval Valued Data Through Interval K-Means Clustering

Author(s):  
D. S. Guru ◽  
N. Vinay Kumar ◽  
Mahamad Suhil

This paper introduces a novel feature selection model for supervised interval valued data based on interval K-Means clustering. The proposed model explores two kinds of feature selection through feature clustering viz., class independent feature selection and class dependent feature selection. The former one clusters the features spread across all the samples belonging to all the classes, whereas the latter one clusters the features spread across only the samples belonging to the respective classes. Both feature selection models are demonstrated to explore the generosity of clustering in selecting the interval valued features. For clustering, the kernel of the K-means clustering has been altered to operate on interval valued data. For experimentation purpose four standard benchmarking datasets and three symbolic classifiers have been used. To corroborate the effectiveness of the proposed model, a comparative analysis against the state-of-the-art models is given and results show the superiority of the proposed model.

2020 ◽  
Vol 34 (05) ◽  
pp. 9032-9039
Author(s):  
Zhixing Tian ◽  
Yuanzhe Zhang ◽  
Xinwei Feng ◽  
Wenbin Jiang ◽  
Yajuan Lyu ◽  
...  

This paper focuses on the answer sentence selection task. Unlike previous work, which only models the relation between the question and each candidate sentence, we propose Multi-Perspective Graph Encoder (MPGE) to take the relations among the candidate sentences into account and capture the relations from multiple perspectives. By utilizing MPGE as a module, we construct two answer sentence selection models which are based on traditional representation and pre-trained representation, respectively. We conduct extensive experiments on two datasets, WikiQA and SQuAD. The results show that the proposed MPGE is effective for both types of representation. Moreover, the overall performance of our proposed model surpasses the state-of-the-art on both datasets. Additionally, we further validate the robustness of our method by the adversarial examples of AddSent and AddOneSent.


Behaviour ◽  
1963 ◽  
Vol 22 (1-2) ◽  
pp. 152-166 ◽  
Author(s):  
Axel Michelsen

AbstractA description is given of the sexual behaviour of 16 longicorn beetles of the subfamily Lepturinae. The following points have been investigated:- 1. Stimulation of the female performed by the male either as a "licking" or combined "licking and tapping" of the female elytra or the grasping of an antenna of the female. 2. Movements of the antennae of the male, which seem to be an expression of the "state of excitement" of the male. These movements are in principle thought to be one of the behaviour patterns originally present in the order Coleoptera. 3. A "round dance", one of the methods for the female to throw off the male after copula, is described. 4. A selection of partner according to size is described in the genus Rhagium. 5. A comparative analysis is attempted for some species and systematic conclusions of such comparisons are proposed.


2017 ◽  
Vol 67 ◽  
pp. 29-42 ◽  
Author(s):  
Pui Yi Lee ◽  
Wei Ping Loh ◽  
Jeng Feng Chin

2017 ◽  
Vol 108 (1) ◽  
pp. 307-318 ◽  
Author(s):  
Eleftherios Avramidis

AbstractA deeper analysis on Comparative Quality Estimation is presented by extending the state-of-the-art methods with adequacy and grammatical features from other Quality Estimation tasks. The previously used linear method, unable to cope with the augmented features, is replaced with a boosting classifier assisted by feature selection. The methods indicated show improved performance for 6 language pairs, when applied on the output from MT systems developed over 7 years. The improved models compete better with reference-aware metrics.Notable conclusions are reached through the examination of the contribution of the features in the models, whereas it is possible to identify common MT errors that are captured by the features. Many grammatical/fluency features have a good contribution, few adequacy features have some contribution, whereas source complexity features are of no use. The importance of many fluency and adequacy features is language-specific.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4534 ◽  
Author(s):  
Elżbieta Bogdan ◽  
Piotr Michorczyk

This paper describes the process of additive manufacturing and a selection of three-dimensional (3D) printing methods which have applications in chemical synthesis, specifically for the production of monolithic catalysts. A review was conducted on reference literature for 3D printing applications in the field of catalysis. It was proven that 3D printing is a promising production method for catalysts.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1046 ◽  
Author(s):  
Omar Almomani

The network intrusion detection system (NIDS) aims to identify virulent action in a network. It aims to do that through investigating the traffic network behavior. The approaches of data mining and machine learning (ML) are extensively used in the NIDS to discover anomalies. Regarding feature selection, it plays a significant role in improving the performance of NIDSs. That is because anomaly detection employs a great number of features that require much time. Therefore, the feature selection approach affects the time needed to investigate the traffic behavior and improve the accuracy level. The researcher of the present study aimed to propose a feature selection model for NIDSs. This model is based on the particle swarm optimization (PSO), grey wolf optimizer (GWO), firefly optimization (FFA) and genetic algorithm (GA). The proposed model aims at improving the performance of NIDSs. The proposed model deploys wrapper-based methods with the GA, PSO, GWO and FFA algorithms for selecting features using Anaconda Python Open Source, and deploys filtering-based methods for the mutual information (MI) of the GA, PSO, GWO and FFA algorithms that produced 13 sets of rules. The features derived from the proposed model are evaluated based on the support vector machine (SVM) and J48 ML classifiers and the UNSW-NB15 dataset. Based on the experiment, Rule 13 (R13) reduces the features into 30 features. Rule 12 (R12) reduces the features into 13 features. Rule 13 and Rule 12 offer the best results in terms of F-measure, accuracy and sensitivity. The genetic algorithm (GA) shows good results in terms of True Positive Rate (TPR) and False Negative Rate (FNR). As for Rules 11, 9 and 8, they show good results in terms of False Positive Rate (FPR), while PSO shows good results in terms of precision and True Negative Rate (TNR). It was found that the intrusion detection system with fewer features will increase accuracy. The proposed feature selection model for NIDS is rule-based pattern recognition to discover computer network attack which is in the scope of Symmetry journal.


2020 ◽  
Vol 23 (4) ◽  
pp. 3095-3117
Author(s):  
Amjad Ullah ◽  
Jingpeng Li ◽  
Amir Hussain

Abstract The elasticity in cloud is essential to the effective management of computational resources as it enables readjustment at runtime to meet application demands. Over the years, researchers and practitioners have proposed many auto-scaling solutions using versatile techniques ranging from simple if-then-else based rules to sophisticated optimisation, control theory and machine learning based methods. However, despite an extensive range of existing elasticity research, the aim of implementing an efficient scaling technique that satisfies the actual demands is still a challenge to achieve. The existing methods suffer from issues like: (1) the lack of adaptability and static scaling behaviour whilst considering completely fixed approaches; (2) the burden of additional computational overhead, the inability to cope with the sudden changes in the workload behaviour and the preference of adaptability over reliability at runtime whilst considering the fully dynamic approaches; and (3) the lack of considering uncertainty aspects while designing auto-scaling solutions. In this paper, we aim to address these issues using a holistic biologically-inspired feedback switch controller. This method utilises multiple controllers and a switching mechanism, implemented using fuzzy system, that realises the selection of suitable controller at runtime. The fuzzy system also facilitates the design of qualitative elasticity rules. Furthermore, to improve the possibility of avoiding the oscillatory behaviour (a problem commonly associated with switch methodologies), this paper integrates a biologically-inspired computational model of action selection. Lastly, we identify seven different kinds of real workload patterns and utilise them to evaluate the performance of the proposed method against the state-of-the-art approaches. The obtained computational results demonstrate that the proposed method results in achieving better performance without incurring any additional cost in comparison to the state-of-the-art approaches.


2020 ◽  
Vol 34 (07) ◽  
pp. 11394-11401
Author(s):  
Shuzhao Li ◽  
Huimin Yu ◽  
Haoji Hu

In this paper, we propose an Appearance and Motion Enhancement Model (AMEM) for video-based person re-identification to enrich the two kinds of information contained in the backbone network in a more interpretable way. Concretely, human attribute recognition under the supervision of pseudo labels is exploited in an Appearance Enhancement Module (AEM) to help enrich the appearance and semantic information. A Motion Enhancement Module (MEM) is designed to capture the identity-discriminative walking patterns through predicting future frames. Despite a complex model with several auxiliary modules during training, only the backbone model plus two small branches are kept for similarity evaluation which constitute a simple but effective final model. Extensive experiments conducted on three popular video-based person ReID benchmarks demonstrate the effectiveness of our proposed model and the state-of-the-art performance compared with existing methods.


2016 ◽  
Vol 40 (2) ◽  
pp. 70-83 ◽  
Author(s):  
Valerio Velardo ◽  
Mauro Vallati ◽  
Steven Jan

Fostered by the introduction of the Music Information Retrieval Evaluation Exchange (MIREX) competition, the number of systems that calculate symbolic melodic similarity has recently increased considerably. To understand the state of the art, we provide a comparative analysis of existing algorithms. The analysis is based on eight criteria that help to characterize the systems, highlighting strengths and weaknesses. We also propose a taxonomy that classifies algorithms based on their approach. Both taxonomy and criteria are fruitfully exploited to provide input for new, forthcoming research in the area.


Sign in / Sign up

Export Citation Format

Share Document