Improving Collaborative Filtering Algorithms

2016 ◽  
Vol 7 (3) ◽  
pp. 99-118 ◽  
Author(s):  
Firas Ben Kharrat ◽  
Aymen Elkhleifi ◽  
Rim Faiz

This paper puts forward a new recommendation algorithm based on semantic analysis as well as new measurements. Like Facebook, Social network is considered as one of the most well-prominent Web 2.0 applications and relevant services elaborating into functional ways for sharing opinions. Thereupon, social network web sites have since become valuable data sources for opinion mining. This paper proposes to introduce an external resource a sentiment from comments posted by users in order to anticipate recommendation and also to lessen the cold-start problem. The originality of the suggested approach means that posts are not merely characterized by an opinion score, but receive an opinion grade notion in the post instead. In general, the authors' approach has been implemented with Java and Lenskit framework. The study resulted in two real data sets, namely MovieLens and TripAdvisor, in which the authors have shown positive results. They compared their algorithm to SVD and Slope One algorithms. They have fulfilled an amelioration of 10% in precision and recall along with an improvement of 12% in RMSE and nDCG.

2020 ◽  
pp. 638-657
Author(s):  
Firas Ben Kharrat ◽  
Aymen Elkhleifi ◽  
Rim Faiz

This paper puts forward a new recommendation algorithm based on semantic analysis as well as new measurements. Like Facebook, Social network is considered as one of the most well-prominent Web 2.0 applications and relevant services elaborating into functional ways for sharing opinions. Thereupon, social network web sites have since become valuable data sources for opinion mining. This paper proposes to introduce an external resource a sentiment from comments posted by users in order to anticipate recommendation and also to lessen the cold-start problem. The originality of the suggested approach means that posts are not merely characterized by an opinion score, but receive an opinion grade notion in the post instead. In general, the authors' approach has been implemented with Java and Lenskit framework. The study resulted in two real data sets, namely MovieLens and TripAdvisor, in which the authors have shown positive results. They compared their algorithm to SVD and Slope One algorithms. They have fulfilled an amelioration of 10% in precision and recall along with an improvement of 12% in RMSE and nDCG.


2016 ◽  
Vol 6 (2) ◽  
pp. 1-23 ◽  
Author(s):  
Surbhi Bhatia ◽  
Manisha Sharma ◽  
Komal Kumar Bhatia

Due to the sudden and explosive increase in web technologies, huge quantity of user generated content is available online. The experiences of people and their opinions play an important role in the decision making process. Although facts provide the ease of searching information on a topic but retrieving opinions is still a crucial task. Many studies on opinion mining have to be undertaken efficiently in order to extract constructive opinionated information from these reviews. The present work focuses on the design and implementation of an Opinion Crawler which downloads the opinions from various sites thereby, ignoring rest of the web. Besides, it also detects web pages which frequently undergo updation by calculating the timestamp for its revisit in order to extract relevant opinions. The performance of the Opinion Crawler is justified by taking real data sets that prove to be much more accurate in terms of precision and recall quality attributes.


Author(s):  
Dalia Sulieman ◽  
Maria Malek ◽  
Hubert Kadima ◽  
Dominique Laurent

In this article, the authors consider the basic problem of recommender systems that is identifying a set of users to whom a given item is to be recommended. In practice recommender systems are run against huge sets of users, and the problem is then to avoid scanning the whole user set in order to produce the recommendation list. To cope with problem, they consider that users are connected through a social network and that taxonomy over the items has been defined. These two kinds of information are respectively called social and semantic information. In their contribution the authors suggest combining social information with semantic information in one algorithm in order to compute recommendation lists by visiting a limited part of the social network. In their experiments, the authors use two real data sets, namely Amazon.com and MovieLens, and they compare their algorithms with the standard item-based collaborative filtering and hybrid recommendation algorithms. The results show satisfying accuracy values and a very significant improvement of performance, by exploring a small part of the graph instead of exploring the whole graph.


2016 ◽  
Vol 16 (6) ◽  
pp. 146-159 ◽  
Author(s):  
Zhijun Zhang ◽  
Huali Pan ◽  
Gongwen Xu ◽  
Yongkang Wang ◽  
Pengfei Zhang

Abstract With the rapid development of social networks, location based social network gradually rises. In order to retrieve user’s most preferred attractions from a large number of tourism information, personalized recommendation algorithm based on the geographic location has been widely concerned in academic and industry. Aiming at the problem of low accuracy in personalized tourism recommendation system, this paper presents a personalized algorithm for tourist attraction recommendation – RecUFG Algorithm, which combines user collaborative filtering technology with friends trust relationships and geographic context. This algorithm fully exploits social relations and trust friendship between users, and by means of the geographic information between user and attraction location, recommends users most interesting attractions. Experimental results on real data sets demonstrate the feasibility and effectiveness of the algorithm. Compared with the existing recommendation algorithm, it has a higher prediction accuracy and customer satisfaction.


2013 ◽  
Vol 4 (2) ◽  
pp. 31-50 ◽  
Author(s):  
Simon Andrews ◽  
Constantinos Orphanides

Formal Concept Analysis (FCA) has been successfully applied to data in a number of problem domains. However, its use has tended to be on an ad hoc, bespoke basis, relying on FCA experts working closely with domain experts and requiring the production of specialised FCA software for the data analysis. The availability of generalised tools and techniques, that might allow FCA to be applied to data more widely, is limited. Two important issues provide barriers: raw data is not normally in a form suitable for FCA and requires undergoing a process of transformation to make it suitable, and even when converted into a suitable form for FCA, real data sets tend to produce a large number of results that can be difficult to manage and interpret. This article describes how some open-source tools and techniques have been developed and used to address these issues and make FCA more widely available and applicable. Three examples of real data sets, and real problems related to them, are used to illustrate the application of the tools and techniques and demonstrate how FCA can be used as a semantic technology to discover knowledge. Furthermore, it is shown how these tools and techniques enable FCA to deliver a visual and intuitive means of mining large data sets for association and implication rules that complements the semantic analysis. In fact, it transpires that FCA reveals hidden meaning in data that can then be examined in more detail using an FCA approach to traditional data mining methods.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 992 ◽  
Author(s):  
Xu Yang ◽  
Billy Zimba ◽  
Tingting Qiao ◽  
Keyan Gao ◽  
Xiaoya Chen

With the development of wireless Internet and the popularity of location sensors in mobile phones, the coupling degree between social networks and location sensor information is increasing. Many studies in the Location-Based Social Network (LBSN) domain have begun to use social media and location sensing information to implement personalized Points-of-interests (POI) recommendations. However, this approach may fall short when a user moves to a new district or city where they have little or no activity history and social network friend information. Thus, a need to reconsider how we model the factors influencing a user’s preferences in new geographical regions in order to make personalized and relevant recommendation. A POI in LBSNs is semantically enriched with annotations such as place categories, tags, tips or user reviews which implies knowledge about the nature of the place as well as a visiting person’s interests. This provides us with opportunities to better understand the patterns in users’ interests and activities by exploiting the annotations which will continue to be useful even when a user moves to unfamiliar places. In this research, we proposed a location-aware POI recommendation system that models user preferences mainly based on user reviews, which shows the nature of activities that a user finds interesting. Using this information from users’ location history, we predict user ratings by harnessing the information present in review text as well as consider social influence from similar user set formed based on matching category preferences and similar reviews. We use real data sets partitioned by city provided by Yelp, to compare the accuracy of our proposed method against some baseline POI recommendation algorithms. Experimental results show that our algorithm achieves a better accuracy.


2014 ◽  
Vol 513-517 ◽  
pp. 965-968
Author(s):  
Liu Mei Zhang ◽  
Jian Feng Ma ◽  
Di Lu ◽  
Yi Chuan Wang

The paper proposed an attribute clustering based collaborative filtering algorithm for recommendation. It utilizes similarity to filter out redundant attributes by feature selection. Then by incorporating K-Means clustering, it is able to effectively solve the rating scale problems existing in the traditional collaborative filtering recommendation algorithm. The algorithm is verified by real data sets. Experiments use location information for clustering the restaurant data. By integration of users rating on restaurant service and external impression the experiment study combined the collaborative filtering philosophy to provide recommendation service for users. Experimental results show that compared with the item rating based recommended algorithm, the algorithm has ideal recommended quality and improved accuracy, and then it has reduced the data sparsity.


Author(s):  
K Sobha Rani

Collaborative filtering suffers from the problems of data sparsity and cold start, which dramatically degrade recommendation performance. To help resolve these issues, we propose TrustSVD, a trust-based matrix factorization technique. By analyzing the social trust data from four real-world data sets, we conclude that not only the explicit but also the implicit influence of both ratings and trust should be taken into consideration in a recommendation model. Hence, we build on top of a state-of-the-art recommendation algorithm SVD++ which inherently involves the explicit and implicit influence of rated items, by further incorporating both the explicit and implicit influence of trusted users on the prediction of items for an active user. To our knowledge, the work reported is the first to extend SVD++ with social trust information. Experimental results on the four data sets demonstrate that our approach TrustSVD achieves better accuracy than other ten counterparts, and can better handle the concerned issues.


2019 ◽  
pp. 1-13
Author(s):  
Luz Judith Rodríguez-Esparza ◽  
Diana Barraza-Barraza ◽  
Jesús Salazar-Ibarra ◽  
Rafael Gerardo Vargas-Pasaye

Objectives: To identify early suicide risk signs on depressive subjects, so that specialized care can be provided. Various studies have focused on studying expressions on social networks, where users pour their emotions, to determine if they show signs of depression or not. However, they have neglected the quantification of the risk of committing suicide. Therefore, this article proposes a new index for identifying suicide risk in Mexico. Methodology: The proposal index is constructed through opinion mining using Twitter and the Analytic Hierarchy Process. Contribution: Using R statistical package, a study is presented considering real data, making a classification of people according to the obtained index and using information from psychologists. The proposed methodology represents an innovative prevention alternative for suicide.


Sign in / Sign up

Export Citation Format

Share Document