Online Music Style Recognition via Mobile Computing

Music is a widely used data format in the explosion of Internet information. Automatically identifying the style of online music in the Internet is an important and hot topic in the field of music information retrieval and music production. Recently, automatic music style recognition has been used in many real life scenes. Due to the emerging of machine learning, it provides a good foundation for automatic music style recognition. This paper adopts machine learning technology to establish an automatic music style recognition system. First, the online music is process by waveform analysis to remove the noises. Second, the denoised music signals are represented as sample entropy features by using empirical model decomposition. Lastly, the extracted features are used to learn a relative margin support vector machine model to predict future music style. The experimental results demonstrate the effectiveness of the proposed framework.

2020 ◽  
Vol 10 (18) ◽  
pp. 6417 ◽  
Author(s):  
Emanuele Lattanzi ◽  
Giacomo Castellucci ◽  
Valerio Freschi

Most road accidents occur due to human fatigue, inattention, or drowsiness. Recently, machine learning technology has been successfully applied to identifying driving styles and recognizing unsafe behaviors starting from in-vehicle sensors signals such as vehicle and engine speed, throttle position, and engine load. In this work, we investigated the fusion of different external sensors, such as a gyroscope and a magnetometer, with in-vehicle sensors, to increase machine learning identification of unsafe driver behavior. Starting from those signals, we computed a set of features capable to accurately describe the behavior of the driver. A support vector machine and an artificial neural network were then trained and tested using several features calculated over more than 200 km of travel. The ground truth used to evaluate classification performances was obtained by means of an objective methodology based on the relationship between speed, and lateral and longitudinal acceleration of the vehicle. The classification results showed an average accuracy of about 88% using the SVM classifier and of about 90% using the neural network demonstrating the potential capability of the proposed methodology to identify unsafe driver behaviors.


2022 ◽  
Vol 12 (2) ◽  
pp. 828
Author(s):  
Tebogo Bokaba ◽  
Wesley Doorsamy ◽  
Babu Sena Paul

Road traffic accidents (RTAs) are a major cause of injuries and fatalities worldwide. In recent years, there has been a growing global interest in analysing RTAs, specifically concerned with analysing and modelling accident data to better understand and assess the causes and effects of accidents. This study analysed the performance of widely used machine learning classifiers using a real-life RTA dataset from Gauteng, South Africa. The study aimed to assess prediction model designs for RTAs to assist transport authorities and policymakers. It considered classifiers such as naïve Bayes, logistic regression, k-nearest neighbour, AdaBoost, support vector machine, random forest, and five missing data methods. These classifiers were evaluated using five evaluation metrics: accuracy, root-mean-square error, precision, recall, and receiver operating characteristic curves. Furthermore, the assessment involved parameter adjustment and incorporated dimensionality reduction techniques. The empirical results and analyses show that the RF classifier, combined with multiple imputations by chained equations, yielded the best performance when compared with the other combinations.


2021 ◽  
Vol 7 (2) ◽  
pp. 203-206
Author(s):  
Herag Arabian ◽  
Verena Wagner-Hartl ◽  
Knut Moeller

Abstract Facial emotion recognition (FER) is a topic that has gained interest over the years for its role in bridging the gap between Human and Machine interactions. This study explores the potential of real time FER modelling, to be integrated in a closed loop system, to help in treatment of children suffering from Autism Spectrum Disorder (ASD). The aim of this study is to show the differences between implementing Traditional machine learning and Deep learning approaches for FER modelling. Two classification approaches were taken, the first approach was based on classic machine learning techniques using Histogram of Oriented Gradients (HOG) for feature extraction, with a k-Nearest Neighbor and a Support Vector Machine model as classifiers. The second approach uses Transfer Learning based on the popular “Alex Net” Neural Network architecture. The performance of the approaches was based on the accuracy of randomly selected validation sets after training on random training sets of the Oulu-CASIA database. The data analyzed shows that traditional machine learning methods are as effective as deep neural net models and are a good compromise between accuracy, extracted features, computational speed and costs.


Author(s):  
Hesham M. Al-Ammal

Detection of anomalies in a given data set is a vital step in several applications in cybersecurity; including intrusion detection, fraud, and social network analysis. Many of these techniques detect anomalies by examining graph-based data. Analyzing graphs makes it possible to capture relationships, communities, as well as anomalies. The advantage of using graphs is that many real-life situations can be easily modeled by a graph that captures their structure and inter-dependencies. Although anomaly detection in graphs dates back to the 1990s, recent advances in research utilized machine learning methods for anomaly detection over graphs. This chapter will concentrate on static graphs (both labeled and unlabeled), and the chapter summarizes some of these recent studies in machine learning for anomaly detection in graphs. This includes methods such as support vector machines, neural networks, generative neural networks, and deep learning methods. The chapter will reflect the success and challenges of using these methods in the context of graph-based anomaly detection.


2012 ◽  
Vol 198-199 ◽  
pp. 922-926
Author(s):  
Run Ying Wang ◽  
Lin Xu

In order to achieve efficient management of the dam, the new algorithms such as reinforcement learning, Synergetic, Structural Risk Minimization and Particle Swarm Optimization are used to establish a Cooperative Wavelet Least Squares Support Vector Machine Model. To improve the convergence rate and make full use of knowledge and advice of mechanics and hydraulics of the dam, WLS-SVRM and WLS-SVCM models are used cooperatively. Before the training online, mapping provides training samples for WLS-SVCM. During the course of training online, the numerical simulation and WLS-SVCM will provide knowledge and advices for WLS-SVRM. Case study shows that the model can provide timely information of gate opening and management information of the dam so as to provide decision support for engineering management.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1393 ◽  
Author(s):  
Yanwei Yang ◽  
Xiaojian Hao ◽  
Lili Zhang ◽  
Long Ren

Due to the complexity of, and low accuracy in, iron ore classification, a method of Laser-Induced Breakdown Spectroscopy (LIBS) combined with machine learning is proposed. In the research, we collected LIBS spectra of 10 iron ore samples. At the beginning, principal component analysis algorithm was employed to reduce the dimensionality of spectral data, then we applied k-nearest neighbor model, neural network model, and support vector machine model to the classification. The results showed that the accuracy of three models were 82.96%, 93.33%, and 94.07% respectively. The results also demonstrated that LIBS with machine learning model exhibits an excellent classification performance. Therefore, LIBS technique combined with machine learning can achieve a rapid, precise classification of iron ores, and can provide a completely new method for iron ores’ selection in the metallurgical industry.


2017 ◽  
Vol 36 (3) ◽  
pp. 267-269 ◽  
Author(s):  
Matt Hall ◽  
Brendon Hall

The Geophysical Tutorial in the October issue of The Leading Edge was the first we've done on the topic of machine learning. Brendon Hall's article ( Hall, 2016 ) showed readers how to take a small data set — wireline logs and geologic facies data from nine wells in the Hugoton natural gas and helium field of southwest Kansas ( Dubois et al., 2007 ) — and predict the facies in two wells for which the facies data were not available. The article demonstrated with 25 lines of code how to explore the data set, then create, train and test a machine learning model for facies classification, and finally visualize the results. The workflow took a deliberately naive approach using a support vector machine model. It achieved a sort of baseline accuracy rate — a first-order prediction, if you will — of 0.42. That might sound low, but it's not untypical for a naive approach to this kind of problem. For comparison, random draws from the facies distribution score 0.16, which is therefore the true baseline.


2021 ◽  
Author(s):  
Jiandong Zhou ◽  
Ka Hei Gabriel Wong ◽  
Sharen Lee ◽  
Tong Liu ◽  
Keith Sai Kit Leung ◽  
...  

AbstractBackgroundPulmonary hypertension, a progressive lung disorder with symptoms such as breathlessness and loss of exercise capacity, is highly debilitating and has a negative impact on the quality of life. In this study, we examined whether a multi-parametric approach using machine learning can improve mortality prediction.MethodsA population-based territory-wide cohort of pulmonary hypertension patients from January 1, 2000 to December 31, 2017 were retrospectively analyzed. Significant predictors of all-cause mortality were identified. Easy-to-use frailty indexes predicting primary and secondary pulmonary hypertension were derived and stratification performances of the derived scores were compared. A factorization machine model was used for the development of an accurate predictive risk model and the results were compared to multivariate logistic regression, support vector machine, random forests, and multilayer perceptron.ResultsThe cohorts consist of 2562 patients with either primary (n=1009) or secondary (n=1553) pulmonary hypertension. Multivariate Cox regression showed that age, prior cardiovascular, respiratory and kidney diseases, hypertension, number of emergency readmissions within 28 days of discharge were all predictors of all-cause mortality. Easy-to-use frailty scores were developed from Cox regression. A factorization machine model demonstrates superior risk prediction improvements for both primary (precision: 0.90, recall: 0.89, F1-score: 0.91, AUC: 0.91) and secondary pulmonary hypertension (precision: 0.87, recall: 0.86, F1-score: 0.89, AUC: 0.88) patients.ConclusionWe derived easy-to-use frailty scores predicting mortality in primary and secondary pulmonary hypertension. A machine learning model incorporating multi-modality clinical data significantly improves risk stratification performance.


2021 ◽  
Vol 15 (58) ◽  
pp. 308-318
Author(s):  
Tran-Hieu Nguyen ◽  
Anh-Tuan Vu

In this paper, a machine learning-based framework is developed to quickly evaluate the structural safety of trusses. Three numerical examples of a 10-bar truss, a 25-bar truss, and a 47-bar truss are used to illustrate the proposed framework. Firstly, several truss cases with different cross-sectional areas are generated by employing the Latin Hypercube Sampling method. Stresses inside truss members as well as displacements of nodes are determined through finite element analyses and obtained values are compared with design constraints. According to the constraint verification, the safety state is assigned as safe or unsafe. Members’ sectional areas and the safety state are stored as the inputs and outputs of the training dataset, respectively. Three popular machine learning classifiers including Support Vector Machine, Deep Neural Network, and Adaptive Boosting are used for evaluating the safety of structures. The comparison is conducted based on two metrics: the accuracy and the area under the ROC curve. For the two first examples, three classifiers get more than 90% of accuracy. For the 47-bar truss, the accuracies of the Support Vector Machine model and the Deep Neural Network model are lower than 70% but the Adaptive Boosting model still retains the high accuracy of approximately 98%. In terms of the area under the ROC curve, the comparative results are similar. Overall, the Adaptive Boosting model outperforms the remaining models. In addition, an investigation is carried out to show the influence of the parameters on the performance of the Adaptive Boosting model.


2021 ◽  
Author(s):  
Kaiho Cheung ◽  
Ishmael Rico ◽  
Tao Li ◽  
Yu Sun

In recent years the popularity of anime has steadily grown. Similar to other forms of media consumers often face a pressing issue: “What do I watch next?”. In this study, we thoroughly examined the current method of solving this issue and determined that the learning curve to effectively utilize the current solution is too high. We developed a program to ensure easier answers to the issue. The program uses a Python-based machine learning algorithm from ScikitLearn and data from My Animelist to create an accurate model that delivers what consumers want, good recommendations [9]. We also carried out different experiments with several iterations to study the difference in accuracy when applying different factors. Through these tests, we have successfully created a reliable Support vector machine model with 57% accuracy in recommending users what to watch.


Sign in / Sign up

Export Citation Format

Share Document