Effect of Process Parameters on Hole Diameter Accuracy in High Pressure Through Coolant Peck Drilling Using Taguchi Technique

Author(s):  
Hanmant V. Shete ◽  
Madhav S. Sohani

Machining with pressurized coolant is nowadays widely accepted technique in the manufacturing industry, especially in high performance machining conditions. The data on the effects of variation of high coolant pressure in drilling operation is limited. This paper presents the effect of high coolant pressures along with spindle speed, feed rate and peck depth on hole diameter accuracy. Experiments were performed on EN9 steel with TiAIN coated through coolant drill on CNC vertical machining center. Taguchi technique was employed for design of experiments and analysis of results. Results showed that the higher values of optimal coolant pressure and spindle speed were demanded for drilling at bottom of hole as compared to that for drilling at top of hole. The optimal values of feed rate and peck depth were same for both the cases of drilling at top and bottom of hole. Use of high coolant pressure in drilling permits higher peck depth for better hole diameter control which results in reduced cycle time and hence production cost.

2020 ◽  
Vol 402 ◽  
pp. 73-80
Author(s):  
Teuku Firsa ◽  
Muhammad Tadjuddin ◽  
Aulia Udink ◽  
Iskandar Hasanuddin

Micromachining technology is a challenge in industrial production to meet the demand for components for machinery. In this research, a study of the best parameters was required to produce the best hole accuracy and the lowest burr formation in the inlet and exit holes using micro-drilling. The work-piece material and cutting tool used respectively was a brass plate with a thickness of 0.5 mm and a micro drill with a diameter of 0.2 mm commonly used for electronic PCBs. The quality of holes was measured and observed by using a stereomicroscope (optical equipment). This microscope can zoom up to 50x objects to facilitate measurement. The microscope was attached by using a digital camera type YW-200 so that the object of observation could be measured using a computer. The result shows that the largest deviation of hole diameter (0.217 mm) occurred at a spindle speed of 14,000 rpm with the lowest feed rate (5 mm/min). Meanwhile, the smallest deviation of hole diameter (0.202 mm) occurred at a spindle speed of 20,000 rpm with a maximum feed rate of 10 mm/min. The maximum burr height (0.050 mm) occurred at a spindle speed of 17,000 rpm and a feed rate of 10 mm/min. In addition, the minimum burr height (0.038 mm) occurred at a spindle speed of 14,000 rpm and a feed rate of 5 mm/min. Therefore, it can be concluded that the deviation of hole diameter was inversely proportional to the spindle speed, and the height of the burr formation was directly proportional to the feed rate.


2018 ◽  
Vol 780 ◽  
pp. 105-110
Author(s):  
Ukrit Thanasuptawee ◽  
Chamrat Thakhamwang ◽  
Somsak Siwadamrongpong

In this study, there are three machining parameters consist of spindle speed, feed rate and depth of cut which were conducted through full factorial with four center points to determine the effect of machining parameters on the surface roughness and verify whether there is curvature in the model for CNC face milling process in an automotive components manufacturer in Thailand. The workpieces used semi-solid die casted ADC12 aluminum alloy crankcase housing which they were performed by the ARES SEIKI model R5630 3-axis CNC vertical machining center and face milling cutter with diameter of 63 millimeters. The surface roughness of face-milled was measured by the surface roughness tester. It was found that the greatest main effect influence to surface roughness was spindle speed, followed by feed rate and depth of cut at significance level of 0.05.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1143-1153
Author(s):  
Yousif K. Shounia ◽  
Tahseen F. Abbas ◽  
Raed R. Shwaish

This research presents a model for prediction surface roughness in terms of process parameters in turning aluminum alloy 1200. The geometry to be machined has four rotational features: straight, taper, convex and concave, while a design of experiments was created through the Taguchi L25 orthogonal array experiments in minitab17 three factors with five Levels depth of cut (0.04, 0.06, 0.08, 0.10 and 0.12) mm, spindle speed (1200, 1400, 1600, 1800 and 2000) r.p.m and feed rate (60, 70, 80, 90 and 100) mm/min. A multiple non-linear regression model has been used which is a set of statistical extrapolation processes to estimate the relationships input variables and output which the surface roughness which prediction outside the range of the data. According to the non-linear regression model, the optimum surface roughness can be obtained at 1800 rpm of spindle speed, feed-rate of 80 mm/min and depth of cut 0.04 mm then the best surface roughness comes out to be 0.04 μm at tapper feature at depth of cut 0.01 mm and same spindle speed and feed rate pervious which gives the error of 3.23% at evolution equation.


Author(s):  
Noor Hassanah Husin ◽  
Nur Naha Abu Mansur ◽  
Nur Naha Abu Mansur ◽  
Beni Widarman Yus Kelana

Innovation plays a major role and is a crucial component of the organization’s growth. Creativity and innovation have become increasingly popular as key contributors to firm success in the last few decades or so. The incoming technology of Industrial Revolution 4.0 forced many companies to be innovative to compete in technological era. However, many SMEs are not ready and less innovative. Furthermore, there is lack of research focus on HPWS implementation amongst SMEs indicates that further research must be conducted along these lines. Therefore, this study aim to investigate the effect of high performance work system (HPWS) towards innovative work behaviour of employees in small and medium enterprises. This study used quantitative approach to identify the critical success factor of high performance work systems (HPWS) in Malaysian small and medium enterprises (SME) manufacturing industry. This study used descriptive analysis to analyze the data. Five-point Likert scales items ranging from (1-strongly disagree, 5 – strongly agree) employed for measuring the HPWS. Therefore, the total of 81 items survey questions were adapted to obtain the respondents for SME manufacturing industry. Reliability analysis shows that all the HPWS dimensions have very good reliability with Cronbach’s alpha value range from 0.884 to 0.976. According to Tang et al (2014), Cronbach’s alpha range between 0.70 and 0.80 considered as good reliability whereby 0.80 and 0.90 considered as very good reliability. Result also showed that selective staffing has the highest mean score followed by employee participation, which are 3.951 and 3.833 respectively. This proved that selective staffing is most important critical success factor in the HPWS implementation for Malaysian SME manufacturing industry. Keywords: high performance work system, work engagement, innovative work behaviour, small and medium enterprise.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 854
Author(s):  
Muhammad Aamir ◽  
Khaled Giasin ◽  
Majid Tolouei-Rad ◽  
Israr Ud Din ◽  
Muhammad Imran Hanif ◽  
...  

Drilling is an important machining process in various manufacturing industries. High-quality holes are possible with the proper selection of tools and cutting parameters. This study investigates the effect of spindle speed, feed rate, and drill diameter on the generated thrust force, the formation of chips, post-machining tool condition, and hole quality. The hole surface defects and the top and bottom edge conditions were also investigated using scan electron microscopy. The drilling tests were carried out on AA2024-T3 alloy under a dry drilling environment using 6 and 10 mm uncoated carbide tools. Analysis of Variance was employed to further evaluate the influence of the input parameters on the analysed outputs. The results show that the thrust force was highly influenced by feed rate and drill size. The high spindle speed resulted in higher surface roughness, while the increase in the feed rate produced more burrs around the edges of the holes. Additionally, the burrs formed at the exit side of holes were larger than those formed at the entry side. The high drill size resulted in greater chip thickness and an increased built-up edge on the cutting tools.


2012 ◽  
Vol 476-478 ◽  
pp. 681-685
Author(s):  
Chang Cheng

The machining center of SINUMERIK-802D system offers a large variety of machining methods. This paper compares a simplified cutter presetting method and several instructions that are less frequently used including rounding instruction (G1/G2/G3, RND), feed rate override instruction (CFC/CFTCP), helical interpolation instruction (G2/G3, TURN) and automatic input of radius compensation instruction ($TC_DP6) with other common instructions and introduces the flexible and simple application of these unfamiliar methods, in an attempt to provide some reference and inspiration for operators.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


2017 ◽  
Vol 748 ◽  
pp. 254-258
Author(s):  
Chang Yi Liu ◽  
Bai Shou Zhang ◽  
Suman Shrestha

Drilling experiments of titanium alloy Ti6Al4V were conducted. Taking the speed and feed as the process variables, a set of experimental cutting forces are obtained and compared. From the experimental results it is concluded that within the experimental extent the thrust force and torque of drilling process rises with the feed rate. The lower spindle speed resulted in the greater amount of thrust. Feed rates have greater influence on the thrust force than the spindle speed. The combination of greater feed rate and lower spindle speed results in the maximum amount of thrust. However, combination of greater feed rate and spindle speed resulted in maximum amount of torque.


Sign in / Sign up

Export Citation Format

Share Document