Variable Interaction Networks in Medical Data

Author(s):  
Stephan M. Winkler ◽  
Gabriel Kronberger ◽  
Michael Affenzeller ◽  
Herbert Stekel

In this paper the authors describe the identification of variable interaction networks based on the analysis of medical data. The main goal is to generate mathematical models for medical parameters using other available parameters in this data set. For each variable the authors identify those features that are most relevant for modeling it; the relevance of a variable can in this context be defined via the frequency of its occurrence in models identified by evolutionary machine learning methods or via the decrease in modeling quality after removing it from the data set. Several data based modeling approaches implemented in HeuristicLab have been applied for identifying estimators for selected continuous as well as discrete medical variables and cancer diagnoses: Genetic programming, linear regression, k-nearest-neighbor regression, support vector machines (optimized using evolutionary algorithms), and random forests. In the empirical section of this paper the authors describe interaction networks identified for a medical data base storing data of more than 600 patients. The authors see that whatever modeling approach is used, it is possible to identify the most important influence factors and display those in interaction networks which can be interpreted without domain knowledge in machine learning or informatics in general.

Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 104 ◽  
Author(s):  
Ahmed ◽  
Yigit ◽  
Isik ◽  
Alpkocak

Leukemia is a fatal cancer and has two main types: Acute and chronic. Each type has two more subtypes: Lymphoid and myeloid. Hence, in total, there are four subtypes of leukemia. This study proposes a new approach for diagnosis of all subtypes of leukemia from microscopic blood cell images using convolutional neural networks (CNN), which requires a large training data set. Therefore, we also investigated the effects of data augmentation for an increasing number of training samples synthetically. We used two publicly available leukemia data sources: ALL-IDB and ASH Image Bank. Next, we applied seven different image transformation techniques as data augmentation. We designed a CNN architecture capable of recognizing all subtypes of leukemia. Besides, we also explored other well-known machine learning algorithms such as naive Bayes, support vector machine, k-nearest neighbor, and decision tree. To evaluate our approach, we set up a set of experiments and used 5-fold cross-validation. The results we obtained from experiments showed that our CNN model performance has 88.25% and 81.74% accuracy, in leukemia versus healthy and multiclass classification of all subtypes, respectively. Finally, we also showed that the CNN model has a better performance than other wellknown machine learning algorithms.


Author(s):  
Nofriani Nofriani

Various approaches have been attempted by the Government of Indonesia to eradicate poverty throughout the country, one of which is equitable distribution of social assistance for target households according to their classification of social welfare status. This research aims to re-evaluate the prior evaluation of five well-known machine learning techniques; Naïve Bayes, Random Forest, Support Vector Machines, K-Nearest Neighbor, and C4.5 Algorithm; on how well they predict the classifications of social welfare statuses. Afterwards, the best-performing one is implemented into an executable machine learning application that may predict the user’s social welfare status. Other objectives are to analyze the reliability of the chosen algorithm in predicting new data set, and generate a simple classification-prediction application. This research uses Python Programming Language, Scikit-Learn Library, Jupyter Notebook, and PyInstaller to perform all the methodology processes. The results shows that Random Forest Algorithm is the best machine learning technique for predicting household’s social welfare status with classification accuracy of 74.20% and the resulted application based on it could correctly predict 60.00% of user’s social welfare status out of 40 entries.


Classification is a form of data mining (regarding machine learning) approach that is helpful in the prediction of group membership for data instances, where the data input is used by the computer program for learning and thereafter this learning is used for classifying the fresh observation made. This data set might just be bi-class or it can be multi-class also. Few instances of the problems in classification include: speech identification, handwriting identification, bio metric detection, document classification etc. Many classification methods exist, which can be utilized for classification. In this research work, the fundamental classification approaches and few important kinds of classification approaches that include decision tree induction, Bayesian networks,k-nearest neighbor classifier and Support Vector Machines (SVM) and fuzzy learning classifiers with their merits, drawbacks, probable applications and challenges faced with the solution available. There are different problems that have an effect on the classification and prediction. The objective of this research work is to render an extensive review of various classification approaches in machine learning. At last, the future work intended on the best classification techniques for the input data are discussed.


Author(s):  
A. Prathap ◽  
Dr. R. Jemima Priyadarsini

A Healthcare system that employs modern computer techniques is the most investigated area in Research. For many years, researchers in the disciplines of Healthcare have collaborated to improve such systems technologically. A number of Internet-based apps on diabetes management have been proposed as a result of rapid developments in wireless and web technology. According to a recent World Health Organization Survey the number of persons affected with diabetics has increased. Diabetes chronic symptoms are the most common Health Problems. Large volumes of medical data are being created. These patients' health data should be recorded and preserved so that continual monitoring and technology advancements can be used to interpret, learn, and anticipate. Internet of Things (IoT) is used to implement numerous applications. IoT can be used in numerous domains, like the health surveillance system of patients. Various successful machine learning methods can be used to forecast diabetes, allowing people to avoid it and receive treatment as soon as possible. Different machine learning classification algorithms for diabetes are investigated in depth in this work. Machine learning algorithms applied on the diabetes data set include K-Nearest Neighbor (KNN), Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), Naive Bayes (NB), and others.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


2021 ◽  
Vol 13 (6) ◽  
pp. 3497
Author(s):  
Hassan Adamu ◽  
Syaheerah Lebai Lutfi ◽  
Nurul Hashimah Ahamed Hassain Malim ◽  
Rohail Hassan ◽  
Assunta Di Vaio ◽  
...  

Sustainable development plays a vital role in information and communication technology. In times of pandemics such as COVID-19, vulnerable people need help to survive. This help includes the distribution of relief packages and materials by the government with the primary objective of lessening the economic and psychological effects on the citizens affected by disasters such as the COVID-19 pandemic. However, there has not been an efficient way to monitor public funds’ accountability and transparency, especially in developing countries such as Nigeria. The understanding of public emotions by the government on distributed palliatives is important as it would indicate the reach and impact of the distribution exercise. Although several studies on English emotion classification have been conducted, these studies are not portable to a wider inclusive Nigerian case. This is because Informal Nigerian English (Pidgin), which Nigerians widely speak, has quite a different vocabulary from Standard English, thus limiting the applicability of the emotion classification of Standard English machine learning models. An Informal Nigerian English (Pidgin English) emotions dataset is constructed, pre-processed, and annotated. The dataset is then used to classify five emotion classes (anger, sadness, joy, fear, and disgust) on the COVID-19 palliatives and relief aid distribution in Nigeria using standard machine learning (ML) algorithms. Six ML algorithms are used in this study, and a comparative analysis of their performance is conducted. The algorithms are Multinomial Naïve Bayes (MNB), Support Vector Machine (SVM), Random Forest (RF), Logistics Regression (LR), K-Nearest Neighbor (KNN), and Decision Tree (DT). The conducted experiments reveal that Support Vector Machine outperforms the remaining classifiers with the highest accuracy of 88%. The “disgust” emotion class surpassed other emotion classes, i.e., sadness, joy, fear, and anger, with the highest number of counts from the classification conducted on the constructed dataset. Additionally, the conducted correlation analysis shows a significant relationship between the emotion classes of “Joy” and “Fear”, which implies that the public is excited about the palliatives’ distribution but afraid of inequality and transparency in the distribution process due to reasons such as corruption. Conclusively, the results from this experiment clearly show that the public emotions on COVID-19 support and relief aid packages’ distribution in Nigeria were not satisfactory, considering that the negative emotions from the public outnumbered the public happiness.


Author(s):  
Noman Ashraf ◽  
Abid Rafiq ◽  
Sabur Butt ◽  
Hafiz Muhammad Faisal Shehzad ◽  
Grigori Sidorov ◽  
...  

On YouTube, billions of videos are watched online and millions of short messages are posted each day. YouTube along with other social networking sites are used by individuals and extremist groups for spreading hatred among users. In this paper, we consider religion as the most targeted domain for spreading hate speech among people of different religions. We present a methodology for the detection of religion-based hate videos on YouTube. Messages posted on YouTube videos generally express the opinions of users’ related to that video. We provide a novel dataset for religious hate speech detection on Youtube comments. The proposed methodology applies data mining techniques on extracted comments from religious videos in order to filter religion-oriented messages and detect those videos which are used for spreading hate. The supervised learning algorithms: Support Vector Machine (SVM), Logistic Regression (LR), and k-Nearest Neighbor (k-NN) are used for baseline results.


Author(s):  
Sandy C. Lauguico ◽  
◽  
Ronnie S. Concepcion II ◽  
Jonnel D. Alejandrino ◽  
Rogelio Ruzcko Tobias ◽  
...  

The arising problem on food scarcity drives the innovation of urban farming. One of the methods in urban farming is the smart aquaponics. However, for a smart aquaponics to yield crops successfully, it needs intensive monitoring, control, and automation. An efficient way of implementing this is the utilization of vision systems and machine learning algorithms to optimize the capabilities of the farming technique. To realize this, a comparative analysis of three machine learning estimators: Logistic Regression (LR), K-Nearest Neighbor (KNN), and Linear Support Vector Machine (L-SVM) was conducted. This was done by modeling each algorithm from the machine vision-feature extracted images of lettuce which were raised in a smart aquaponics setup. Each of the model was optimized to increase cross and hold-out validations. The results showed that KNN having the tuned hyperparameters of n_neighbors=24, weights='distance', algorithm='auto', leaf_size = 10 was the most effective model for the given dataset, yielding a cross-validation mean accuracy of 87.06% and a classification accuracy of 91.67%.


Sign in / Sign up

Export Citation Format

Share Document