A Novel Bio Inspired Algorithm Based on Echolocation Mechanism of Bats for Seismic States Prediction

2017 ◽  
Vol 8 (3) ◽  
pp. 1-18 ◽  
Author(s):  
Mohamed Elhadi Rahmani ◽  
Abdelmalek Amine ◽  
Reda Mohamed Hamou

Bio-inspired algorithms are sort of implementation of natural solutions to solve hard problems – so called NP problems. A seismic hazard is the probability that an earthquake will occur in a given geographic area, within a given window of time, and with ground motion intensity exceeding a given threshold. Seismic hazards prediction is one of the fields where data mining plays an important role. This paper presents a new bio-inspired algorithm motivated by the echolocation behavior of bats for seismic hazard states prediction in coal mines based on previously recorded data. It is a distance calculation based approach, Results were very satisfactory in a manner that encourage us to continue working on this approach. The implementation of the algorithm touches three fields of studies, data discovery or so called data mining, bio inspired techniques, and seismic hazards predictions.

Author(s):  
Katerina Demjancukova ◽  
Dana Prochazkova

The region of the Czech Republic is mostly composed of the Bohemian Massif which is considered as a geological unit with low seismic activity. Nevertheless, all critical objects as the nuclear power plants, big dams etc. are built as aseismic structures. The nuclear installations have to satisfy the IAEA safety standards and requirements. One of important phenomena that have to be involved in the PSHA process is the diffuse seismicity. In 2010 International Atomic Energy Agency issued a specific safety guide SSG-9 Seismic Hazards in Site Evaluation for Nuclear Installations. The key chapters are focused on general recommendations, necessary information and investigations (database), construction of a regional seismotectonic model, evaluation of the ground motion hazard, probabilistic seismic hazards analysis (PSHA), deterministic seismic hazards analysis, potential for fault displacement at the site, design basis ground motion, fault displacement and other hazards, evaluation of seismic hazards for nuclear installations other than NPPs. In the paper a numerical example of seismic hazard assessment will be presented with emphasis on problems and particularities related to PSHA in countries with low seismic activity.


2016 ◽  
Vol 11 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Takahiro Maeda ◽  
◽  
Hiroyuki Fujiwara

We have developed a data mining system of parallel distributed processing system which is applicable to the large-scale and high-resolution numerical simulation of ground motion by transforming into ground motion indices and their statistical values, and then visualize their values for the seismic hazard information. In this system, seismic waveforms at many locations calculated for many possible earthquake scenarios can be used as input data. The system utilizes Hadoop and it calculates the ground motion indices, such as PGV, and statistical values, such as maximum, minimum, average, and standard deviation of PGV, by parallel distributed processing with MapReduce. The computation results are being an output as GIS (Geographic Information System) data file for visualization. And this GIS data is made available via the Web Map Service (WMS). In this study, we perform two benchmark tests by applying three-component synthetic waveforms at about 80,000 locations for 10 possible scenarios of a great earthquake in Nankai Trough to our system. One is the test for PGV calculation processing. Another one is the test for PGV data mining processing. A maximum of 10 parallel processing are tested for both cases. We find that our system can hold the performance even when the total tasks is larger than 10. This system can enable us to effectively study and widely distribute to the communities for disaster mitigation since it is built with data mining and visualization for hazard information by handling a large number of data from a large-scale numerical simulation.


Author(s):  
Seongjun Park ◽  
Tae-Kyung Hong ◽  
Gyubyeong Rah

ABSTRACT The Korean Peninsula is located in a stable intraplate region with low-seismicity rates and long recurrence intervals of major earthquakes. Recent moderate-size earthquakes demonstrate possible occurrence of seismic damages in the Korean Peninsula. A probabilistic seismic hazard analysis based on instrumental and historical seismicity is applied for the Korean Peninsula. Three seismotectonic province models are used for area sources. Seven ground-motion prediction equations calibrated for bedrock condition are considered. Fault source models are not applied due to poor identification of active faults. A 500 yr long historical record of earthquakes includes moderate and large earthquakes of long recurrence intervals. The influences of model parameters are reflected through a logic-tree scheme. The process and results are verified by Monte Carlo ground-motion level simulation and benchmark tests. Relatively high-seismic hazards are modeled in the northwestern, south-central, and southeastern Korean Peninsula. The horizontal peak ground accelerations reach ∼0.06, 0.09, 0.13, 0.21, and 0.28g for periods of 25, 50, 100, 250, and 500 yr, respectively, with exceedance probability of 10%. Successive moderate-size earthquakes since the 11 March 2011 Tohoku–Oki megathrust earthquake have temporarily increased the seismic hazards in the southeastern peninsula.


2019 ◽  
Vol 9 (1) ◽  
pp. 01-12 ◽  
Author(s):  
Kristy F. Tiampo ◽  
Javad Kazemian ◽  
Hadi Ghofrani ◽  
Yelena Kropivnitskaya ◽  
Gero Michel

2021 ◽  
pp. 875529302098197
Author(s):  
Jack W Baker ◽  
Sanaz Rezaeian ◽  
Christine A Goulet ◽  
Nicolas Luco ◽  
Ganyu Teng

This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of available time series and were reviewed to confirm their suitability for response-history analysis. The processes used to select the time series, the characteristics of the resulting data, and the provided documentation are described in this article. The resulting data and documentation are available electronically.


2020 ◽  
Vol 18 (14) ◽  
pp. 6119-6148
Author(s):  
Graeme Weatherill ◽  
Fabrice Cotton

Abstract Regions of low seismicity present a particular challenge for probabilistic seismic hazard analysis when identifying suitable ground motion models (GMMs) and quantifying their epistemic uncertainty. The 2020 European Seismic Hazard Model adopts a scaled backbone approach to characterise this uncertainty for shallow seismicity in Europe, incorporating region-to-region source and attenuation variability based on European strong motion data. This approach, however, may not be suited to stable cratonic region of northeastern Europe (encompassing Finland, Sweden and the Baltic countries), where exploration of various global geophysical datasets reveals that its crustal properties are distinctly different from the rest of Europe, and are instead more closely represented by those of the Central and Eastern United States. Building upon the suite of models developed by the recent NGA East project, we construct a new scaled backbone ground motion model and calibrate its corresponding epistemic uncertainties. The resulting logic tree is shown to provide comparable hazard outcomes to the epistemic uncertainty modelling strategy adopted for the Eastern United States, despite the different approaches taken. Comparison with previous GMM selections for northeastern Europe, however, highlights key differences in short period accelerations resulting from new assumptions regarding the characteristics of the reference rock and its influence on site amplification.


Geosciences ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 503
Author(s):  
Lucia Nardone ◽  
Fabrizio Terenzio Gizzi ◽  
Rosalba Maresca

Cultural heritage represents our legacy with the past and our identity. However, to assure heritage can be passed on to future generations, it is required to put into the field knowledge as well as preventive and safeguard actions, especially for heritage located in seismic hazard-prone areas. With this in mind, the article deals with the analysis of ground response in the Avellino town (Campania, Southern Italy) and its correlation with the effects caused by the 23rd November 1980 Irpinia earthquake on the historical buildings. The aim is to get some clues about the earthquake damage cause-effect relationship. To estimate the ground motion response for Avellino, where strong-motion recordings are not available, we made use of the seismic hazard disaggregation. Then, we made extensive use of borehole data to build the lithological model so being able to assess the seismic ground response. Overall, results indicate that the complex subsoil layers influence the ground motion, particularly in the lowest period (0.1–0.5 s). The comparison with the observed damage of the selected historical buildings and the maximum acceleration expected indicates that the damage distribution cannot be explained by the surface geology effects alone.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenming Wang ◽  
David T. Butler ◽  
Edward W. Woolery ◽  
Lanmin Wang

A scenario seismic hazard analysis was performed for the city of Tianshui. The scenario hazard analysis utilized the best available geologic and seismological information as well as composite source model (i.e., ground motion simulation) to derive ground motion hazards in terms of acceleration time histories, peak values (e.g., peak ground acceleration and peak ground velocity), and response spectra. This study confirms that Tianshui is facing significant seismic hazard, and certain mitigation measures, such as better seismic design for buildings and other structures, should be developed and implemented. This study shows that PGA of 0.3 g (equivalent to Chinese intensity VIII) should be considered for seismic design of general building and PGA of 0.4 g (equivalent to Chinese intensity IX) for seismic design of critical facility in Tianshui.


2017 ◽  
Vol 33 (2) ◽  
pp. 481-498 ◽  
Author(s):  
Julian J. Bommer ◽  
Peter J. Stafford ◽  
Benjamin Edwards ◽  
Bernard Dost ◽  
Ewoud van Dedem ◽  
...  

The potential for building damage and personal injury due to induced earthquakes in the Groningen gas field is being modeled in order to inform risk management decisions. To facilitate the quantitative estimation of the induced seismic hazard and risk, a ground motion prediction model has been developed for response spectral accelerations and duration due to these earthquakes that originate within the reservoir at 3 km depth. The model is consistent with the motions recorded from small-magnitude events and captures the epistemic uncertainty associated with extrapolation to larger magnitudes. In order to reflect the conditions in the field, the model first predicts accelerations at a rock horizon some 800 m below the surface and then convolves these motions with frequency-dependent nonlinear amplification factors assigned to zones across the study area. The variability of the ground motions is modeled in all of its constituent parts at the rock and surface levels.


Sign in / Sign up

Export Citation Format

Share Document