A Resource-Efficient Approach on User Association in 5G Networks Using Downlink and Uplink Decoupling

Author(s):  
Christos Bouras ◽  
Vasileios Kokkinos ◽  
Evangelos Michos

A user-centered network model can significantly optimize connectivity issues between a user and the corresponding base station (BS). This article shall evaluate the user-centric (UC) model targeted for Fifth Generation telecommunication systems and will attempt to optimize communication between users and BSs. The authors suggest a resource-aware mechanism that targets improving coverage through the network decoupling into two separate and independent uplink and downlink networks. The mechanism shall fully respect each user's initially requested throughput demands and aims to solve the network user BS association problem with efficient resource management techniques. Simulations revealed that the mechanism perfectly preserves quality of service (QoS) and offers increased data rates in favor of ultimate user coverage, in both scenarios. Additionally, Frequency Range 2 offers an increased amount of resources, both increased data rates and higher amounts of devices that are covered by the overall network.

Author(s):  
Mischa Dohler ◽  
Djamal-Eddine Meddour ◽  
Sidi-Mohammed Senouci ◽  
Hassnaa Moustafa

An ever-growing demand for higher data-rates has facilitated the growth of wireless networks in the past decades. These networks, however, are known to exhibit capacity and coverage problems, hence jeopardizing the promised quality of service towards the end-user. To overcome these problems, prohibitive investment costs in terms of base station or access point rollouts would be required if traditional, non-scalable, cell-splitting, and micro-cell capacity dimension procedures were applied. The prime aim of current R&D initiatives is, hence, to develop innovative network solutions that decrease the cost per bit/s/Hz over the wireless link. To this end, cooperative networks have emerged as an efficient and promising solution. We discuss in this chapter some key research and deployment issues, with emphasis on cooperative architectures, networking, and security solutions. We expose some motivations to use such networks, as well as latest state-of-the-art developments, open research challenges, and business models.


Author(s):  
Hanan H. Hussein ◽  
Hussein A. Elsayed ◽  
Sherine M. Abd El-kader

5G is the next step in the evolution of mobile communication. The evolving 5G cellular wireless networks are envisioned to provide higher data rates, enhanced end-user quality-of-experience (QoE), reduced end-to-end latency, and lower energy consumption. Device to device (D2D) is one of the key technologies provided to enhance 5G performance. Direct communication between two devices without involvement of any central point (i.e., base station) is defined as device to device (D2D) communication. It is a recommended technique to enhance the network performance of 5G in terms of energy efficiency, throughput, latency, and spectrum utilization. In this chapter, the authors provide a detailed survey on the integration of D2D communication into cellular network especially 5G network. The survey highlights the potential advantages; classifications and application for D2D technology have been indicated. Main D2D standards have been presented. Finally, the chapter addresses main topics that could be related to D2D and indicates all major possible challenges that face most researchers.


Author(s):  
Dimitrios G. Stratogiannis ◽  
Georgios I. Tsiropoulos ◽  
John D. Kanellopoulos ◽  
Panayotis G. Cottis

Fourth generation (4G) wireless networks aim at supporting various multiservice applications over IP architectures which satisfy enhanced users demands through innovative services of increased Quality of Service (QoS). QoS can be assured through independent optimal design of network components or by optimizing interoperability. The supported services impose also their classification into IP network service models and their specifications description. The integration of different wireless access technologies into the 4G network architecture leads to a heterogeneous network environment that raises several issues. An overview of various approaches employed to provide QoS in 4G networks concerning their architectures, different access technologies interoperability and resource management techniques are investigated in this chapter. Dynamic resource allocation, admission control, QoS provision using mobile management and pricing policies are presented. Concluding, in the demanding 4G environment under variable network conditions, appropriate schemes and architectures may provide a robust network management tool for QoS provision and efficient resource utilization.


2012 ◽  
pp. 1-32
Author(s):  
Dimitrios G. Stratogiannis ◽  
Georgios I. Tsiropoulos ◽  
John D. Kanellopoulos ◽  
Panayotis G. Cottis

Fourth generation (4G) wireless networks aim at supporting various multiservice applications over IP architectures which satisfy enhanced users demands through innovative services of increased Quality of Service (QoS). QoS can be assured through independent optimal design of network components or by optimizing interoperability. The supported services impose also their classification into IP network service models and their specifications description. The integration of different wireless access technologies into the 4G network architecture leads to a heterogeneous network environment that raises several issues. An overview of various approaches employed to provide QoS in 4G networks concerning their architectures, different access technologies interoperability and resource management techniques are investigated in this chapter. Dynamic resource allocation, admission control, QoS provision using mobile management and pricing policies are presented. Concluding, in the demanding 4G environment under variable network conditions, appropriate schemes and architectures may provide a robust network management tool for QoS provision and efficient resource utilization.


2018 ◽  
Vol 43 (3) ◽  
pp. 153-180
Author(s):  
Sarah Imam ◽  
Ahmed El-Mahdy

Abstract The fifth generation (5G) cellular wireless networks are heterogeneous networks that will provide higher data rates, enhanced quality-of-experience (QoE) and reduced latency. Interference is one of the main problems in such systems. In this paper, a proposed cross-tier uplink interference alignment algorithm for coexisting two-tier networks is introduced. First at each receiver, the sum of the square of the channel gains from each macro user to this receiver is calculated and the average of these values is taken as a threshold. Macro users whose sum values are greater than this threshold are selected and aligned at the femto receiver. This alignment is performed by using precoders at the transmitters. Then, Zero Forcing technique is applied at the receivers in order to null the aligned interference signals. Numerical results demonstrate the superior performance of the proposed algorithm.


2017 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Sayekti Harits Suryawan ◽  
Mohammad Al Hafidz ◽  
Deny Hermansyah ◽  
Heri Supriyanto ◽  
Yanuandika Akbar

Penggunaan Teknologi Komunikasi pada dekade ini menunjukkan peningkatan trafik data yang sangat signifikan. Dalam hal ini, operator jaringan seluler melakukan inovasi untuk mengurangi jumlah penggunaan energi yang ditimbulkan dari banyaknya jumlah energi yang digunakan tanpa mengurangi quality of service (QoS) kepada costumer. Tujuan pemanfaatan penggunaan energi ini supaya operator jaringan lebih efisiendan tidak mengurangi tingkat efektifitas dalam pemakaian energi yang dikeluarkan. Paper ini menjelaskan mengenai pemakaian jaringan dengan teknologi teknik Base-Station Sleep-Mode. Metode ini akan menjalankan auto controluntuk menjalankan fungsinya pada pemancar jaringan, sehingga dibutuhkan sebuah pendekatan untuk memproses dengan menggunakan parameter-parameter yang dibutuhkan diantaranya User Association, SON (Self-Organizing Network), Cell Zooming, Traffic Prediction, dan Heterogenous Deployment. Salah satu hasil penelitian dari BS Sleeping mode menunjukkan hasil yaitu didapatkan nilai efisiensi energi hingga 90% pada akhir pekan di area bisnis dan perkantoran, dan 30-40%.


Author(s):  
Weston Mwashita ◽  
Marcel Ohanga Odhiambo

This research work presents a power control mechanism developed for ProSe-enabled sensors so that the sensors can be smoothly integrated into the fifth generation (5G) of mobile networks. It is strongly anticipated that 5G networks will provide an enabling environment for the 21st century innovations like the internet of things (IoT). Sensors are pivotal in IoT. The proposed power control mechanism involves an open loop power control (OLPC) mechanism that a ProSe-enabled sensor has to use to establish communication with a base station (BS) and a closed loop power control (CLPC) the BS then has use to establish transmit power levels for devices to be involved in a device to device (D2D) communication depending on the prevailing channel conditions. The results obtained demonstrate that the developed scheme does not adversely affect the quality of service (QoS) of a 5G mobile network.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
AlMuthanna Turki Nassar ◽  
Ahmed Iyanda Sulyman ◽  
Abdulhameed Alsanie

This paper presents radio frequency (RF) capacity estimation for millimeter wave (mm-wave) based fifth-generation (5G) cellular networks using field-level simulations. It is shown that, by reducing antenna beamwidth from 65° to 30°, we can enhance the capacity of mm-wave cellular networks roughly by 3.0 times at a distance of 220 m from the base station (BS). This enhancement is far much higher than the corresponding enhancement of 1.2 times observed for 900 MHz and 2.6 GHz microwave networks at the same distance from the BS. Thus the use of narrow beamwidth transmitting antennas has more pronounced benefits in mm-wave networks. Deployment trials performed on an LTE TDD site operating on 2.6 GHz show that 6-sector site with 27° antenna beamwidth enhances the quality of service (QoS) roughly by 40% and more than doubles the overall BS throughput (while enhancing the per sector throughput 1.1 times on average) compared to a 3-sector site using 65° antenna beamwidth. This agrees well with our capacity simulations. Since mm-wave 5G networks will use arbitrary number of beams, with beamwidth much less than 30°, the capacity enhancement expected in 5G system when using narrow beamwidth antennas would be much more than three times observed in our simulations.


2017 ◽  
Author(s):  
Sayekti Harits Suryawan ◽  
Mohammad Al Hafidz ◽  
Deny Hermansyah ◽  
Heri Supriyanto ◽  
Yanuandika Akbar

Penggunaan Teknologi Komunikasi pada dekade ini menunjukkan peningkatan trafik data yang sangat signifikan. Dalam hal ini, operator jaringan seluler melakukan inovasi untuk mengurangi jumlah penggunaan energi yang ditimbulkan dari banyaknya jumlah energi yang digunakan tanpa mengurangi quality of service (QoS) kepada costumer. Tujuan pemanfaatan penggunaan energi ini supaya operator jaringan lebih efisien dan tidak mengurangi tingkat efektifitas dalam pemakaian energi yang dikeluarkan. Paper ini menjelaskan mengenai pemakaian jaringan dengan teknologi teknik Base-Station Sleep-Mode. Metode ini akan menjalankan auto control untuk menjalankan fungsinya pada pemancar jaringan, sehingga dibutuhkan sebuah pendekatan untuk memproses dengan menggunakan parameter-parameter yang dibutuhkan diantaranya User Association, SON (Self-Organizing Network), Cell Zooming, Traffic Prediction, dan Heterogenous Deployment. Salah satu hasil penelitian dari BS Sleeping mode menunjukkan hasil yaitu didapatkan nilai efisiensi energi hingga 90% pada akhir pekan di area bisnis dan perkantoran, dan 30-40%.


Sign in / Sign up

Export Citation Format

Share Document