Surface Modification of Magnetite Nanoparticles with Doxorubicin and RGD Peptide and their Biomedical Application

Author(s):  
K.M. Kamruzzaman Selim ◽  
Mi Jin Park ◽  
Hong Mi Kim ◽  
Inn Kyu Kang
2007 ◽  
Vol 342-343 ◽  
pp. 793-796 ◽  
Author(s):  
K.M. Kamruzzaman Selim ◽  
Mi Jin Park ◽  
Hong Mi Kim ◽  
Inn Kyu Kang

In the present study, superparamagnetic maltotrionic acid-coated magnetite nanoparticles (MAM) were surface modified with doxorubicin (DOX) and RGD peptide to improve their intracellular uptake, ability to target tumor cells and antitumer effect. RGD was added to the distal end of MAM aiming to construct an enhanced tumor targeting delivery system. To test its targeting effect, DOX, a widely used anticancer drug, was immobilized on the RGD-modified magnetite nanoparticles. DOX-coated magnetite nanoparticles were also prepared as a control. KB cell culture experiment showed that both DOX-modified nanoparticles and DOX-RGD peptide-modified magnetite nanoparticles (DRMAM) were internalized into the cells. But the uptake amount of DRMAMs was higher than that of DOX-modified nanoparticles. This result indicates that DRMAMs have a great potential to be used as contrast agent and antitumor medicine.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2896
Author(s):  
Sara Ferraris ◽  
Silvia Spriano ◽  
Alessandro Calogero Scalia ◽  
Andrea Cochis ◽  
Lia Rimondini ◽  
...  

Electrospinning is gaining increasing interest in the biomedical field as an eco-friendly and economic technique for production of random and oriented polymeric fibers. The aim of this review was to give an overview of electrospinning potentialities in the production of fibers for biomedical applications with a focus on the possibility to combine biomechanical and topographical stimuli. In fact, selection of the polymer and the eventual surface modification of the fibers allow selection of the proper chemical/biological signal to be administered to the cells. Moreover, a proper design of fiber orientation, dimension, and topography can give the opportunity to drive cell growth also from a spatial standpoint. At this purpose, the review contains a first introduction on potentialities of electrospinning for the obtainment of random and oriented fibers both with synthetic and natural polymers. The biological phenomena which can be guided and promoted by fibers composition and topography are in depth investigated and discussed in the second section of the paper. Finally, the recent strategies developed in the scientific community for the realization of electrospun fibers and for their surface modification for biomedical application are presented and discussed in the last section.


2018 ◽  
Vol 7 (2.19) ◽  
pp. 87
Author(s):  
D BALAJ ◽  
C SARALA RUBI ◽  
N G. RENGANATHAN

Attractive nanoparticles have been broadly considered on account of their potential applications as complexity operators in attractive reverberation imaging (MRI) of tumors, cell and DNA partition, attractively guided medication conveyance, tumor hyperthermia. Among the attractive oxides, magnetite nanoparticles are most appropriate because of their low danger and great attractive properties which may be used in drug delivery. Magnetite nanoparticles were synthesized using FeCl3 and FeSO4 as precursors and characterized for size and shape using non-contact AFM.  The formation of magnetite was confirmed by XRD pattern. The elemental composition of the obtained phase was determined using EDAX. In this work, we are aiming to develop drug loaded biopolymer Magnetite nanoparticles for biomedical application. Our main objective is to synthesize and characterize Magnetite (Fe3O4) nanoparticles.  


2015 ◽  
Vol 61 (3) ◽  
pp. 384-388 ◽  
Author(s):  
Ye.M. Vazhnichaya ◽  
Ye.V. Mokliak ◽  
Yu.A. Kurapov ◽  
A.A. Zabozlaev

Magnetite nanoparticles (NPs) are studied as agents for magnetic resonance imaging, hyperthermia of malignant tumors, targeted drug delivery as well as anti-anemic action. One of the main problems of such NPs is their aggregation that requires creation of methods for magnetite NPs stabilization during preparation of liquid medicinal forms on their basis. The present work is devoted to the possibility of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) use for solubilization of magnetite NPs in hydrophilic medium. For this purpose, the condensate produced by electron-beam evaporation and condensation, with magnetite particles of size 5-8 nm deposited into the crystals of sodium chloride were used in conjunction with substance of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate), and low molecular weight polyvinylpyrrolidone (PVP). The NP condensate was dispersed in distilled water or PVP or mexidol solutions. NPs size distribution in the liquid phase of the systems was determined by photon correlation spectroscopy, iron (Fe) concentration was evaluated by atomic emission spectrometry. It is shown that in the dispersion prepared in distilled water, the major amount of NPs was of 13-120 nm in size, in mexidol solution - 270-1700 nm, in PVP solution - 30-900 nm. In the fluid containing magnetite NPs together with mexidol and PVP, the main fraction (99.9%) was characterized by the NPs size of 14-75 nm with maximum of 25 nm. This system had the highest iron concentration: it was similar to that in the sample with mexidol solution and 6.6-7.3 times higher than the concentration in the samples with distilled water or PVP. Thus, in the preparation of aqueous dispersions based on magnetite NPs condensate, mexidol provides a transition of Fe to the liquid phase in amount necessary to achieve its biological activity, and PVP stabilizes such modified NPs.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1059
Author(s):  
Patricia Capellato ◽  
Daniela Sachs ◽  
Lucas V. B. Vasconcelos ◽  
Miriam M. Melo ◽  
Gilbert Silva ◽  
...  

The current metallic biomaterial still presents failures associated with the bulk alloy and the interface of material/human body. In previous studies, titanium alloy with tantalum showed the elastic modulus decrease in comparison with that of commercially pure (cp) titanium. In this study, surface modification on Ti-30Ta alloy was investigated. Titanium and tantalum were melted, homogenized, cold-worked by a rotary swaging process and solubilized. The anodization process was performed in electrolyte contained glycerol + NH4F 0.25% at 30 V using seven different durations—4 h, 5 h, 6 h, 7 h, 8 h, 9 h, and 10 h and annealed at 530 °C for 1 h. The surface topography was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) measurements, X-ray diffraction analysis (XRD), and contact angle. From the results, we conclude the time of anodization process influences the shape and morphology of the anodized layer. The 5 h-anodization process produced a smooth and porous surface. The 4-, 6-, 7-, 8-, 9-, and 10-h conditions showed nanotubes morphology. All surfaces are hydrophilic (<90°). Likewise, all the investigated conditions present anatase phase. So, this surface modification presents potential for biomedical application. However, more work needs to be done to better understand the influence of time on the anodization process.


Sign in / Sign up

Export Citation Format

Share Document