Influence of Alkali Treatment on the Interfacial Bond Strength of Industrial Hemp Fibre Reinforced Epoxy Composites: Effect of Variation from the Ideal Stoicheometric Ratio of Epoxy Resin to Curing Agent

Author(s):  
M.S. Islam ◽  
K.L. Pickering
2007 ◽  
Vol 29-30 ◽  
pp. 319-322 ◽  
Author(s):  
M.S. Islam ◽  
K.L. Pickering

Industrial hemp fibre was treated with alkali and the influence of this treatment on interfacial shear strength (assessed using the single fibre pull-out test) and composite strength with an epoxy resin, over a range of epoxy resin to curing agent ratios, was investigated. Scanning electron microscopy was conducted to assess the fracture behaviour of the composite tensile test specimens. It was found that alkali treatment increased the interfacial shear strength and composite tensile strength, Young’s modulus and elongation at break. The highest tensile strength was obtained with an epoxy resin to curing agent ratio of 1:1 while the best Young’s modulus was achieved with a resin to curing agent ratio of 1:1.2.


2000 ◽  
Vol 9 (3) ◽  
pp. 096369350000900 ◽  
Author(s):  
E. Mδder ◽  
X.-F. Zhou ◽  
E. Pisanova ◽  
S. Zhandarov ◽  
S. R. Nutt

Interfacial bond strength between epoxy resin and glass fibre was studied using the pull-out and push-out techniques. For untreated fibres, these micromechanical tests gave similar values of the local interfacial shear strength and critical energy release rate. In the case of fibres treated by γ-APS, both tests showed considerable increase in the bond strength. However, for the modified fibres, the pull-out test gave greater values of both interfacial parameters than the push-out test, a result attributed to the different modes of interfacial loading. The different loading patterns also cause different failure mechanisms in these two tests.


2012 ◽  
Vol 517 ◽  
pp. 932-938 ◽  
Author(s):  
Zhi Fang ◽  
Hong Qiao Zhang

There exist the problems such as low bond strength and bad durability in the ordinary grouting slurry of the ground anchor system at present. The high-performance grouting mediums RPC (Reactive Powder Concrete) and DSP (Densified Systems containing homogeneously arranged ultrafine Particles) would become the potential replacement of grouting medium in ground anchor resulting from their high compressive strength, durability and toughness. Based on a series of pull-out tests on ground anchors with different high-performance grouting medium of RPC and DSP , different bond length in the construction field, the bond performance on the interfaces between anchor bolt (deformed steel bar) and grouted medium as well as between grouted medium and rock mass was studied. The results indicate that the interfacial bond strength between RPC or DSP and deformed steel bolt ranges within 23-31Mpa, far greater than that (about 2-3MPa) between the ordinary cementitious grout and deformed steel bar. Even though the interfacial bond strength between the grouted medium and rock mass of limestone was not obtained in the test since the failure mode was pull-out of those steel bar rather than the interface shear failure between grouted medium and rock mass, the bond stress on the interface reached 6.2-8.38 MPa, also far greater than the bond strength (about 0.1-3MPa) between the ordinary cementitious slurry and rocks.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1159
Author(s):  
Sungwon Kim ◽  
Hyemin Hong ◽  
Jun Kil Park ◽  
Sangmin Park ◽  
Seoung Ik Choi ◽  
...  

This study aims to investigate the effects of different exposure conditions on the interfacial bond between steel plates and epoxy resin coatings at early ages. Test variables include the epoxy resin types, exposure conditions, exposure periods, and coating equipment. The selected epoxy resins were applied to prepared steel plates and cured at each exposure condition for 7, 28, 56, or 91 days, and the pull-off bond strength and coating thickness were measured. Scanning electron microscopy (SEM) images were obtained to study the interfacial bond for some representative coatings. Three different exposure conditions (indoors and actual marine environment) were considered in this study. This study is also focusing on the improvement of previously developed underwater coating equipment and evaluating the performance. Experiments were conducted to evaluate the performance of the improved equipment types under different environmental conditions: indoors (tap water and seawater) and outdoor conditions. The improved equipment types were confirmed to be effective for underwater coating and easier to use than the previous equipment under real sea conditions. The experimental results also confirmed that the bond strength of the coating decreased as the curing time increased.


2002 ◽  
Vol 11 (1) ◽  
pp. 096369350201100 ◽  
Author(s):  
J. M. Caceres ◽  
A. N. Netravali

The paper discusses a simple specimen geometry to obtain the fibre/cement interfacial shear strength (IFSS). The specimens are easy to prepare and easy to test. The technique gives reliable and reproducible results. IFSS results for five different fibres with cement were measured. Most IFSS values obtained are in the range of 0.15 to 1.5 MPa. Despite the simplicity of the technique presented in this study, the results are in agreement with those obtained by several other researchers using different techniques and specimen geometry.


Sign in / Sign up

Export Citation Format

Share Document