Sol-Gel Fabrication of Low Temperature Organic-Inorganic Hybrid Film Patterns for Photonic Applications

Author(s):  
Wen Xiu Que ◽  
X.M. Ren ◽  
W. Zhang ◽  
W.J. Jiang ◽  
Y. Gao ◽  
...  
2016 ◽  
Vol 6 (2) ◽  
pp. 127-136
Author(s):  
Hee Jeong Park ◽  
Doo Hwan Kim ◽  
Younghee Kim ◽  
Hyung Mi Lim

2007 ◽  
Vol 31 ◽  
pp. 14-16
Author(s):  
Wen Xiu Que ◽  
X.M. Ren ◽  
W. Zhang ◽  
W.J. Jiang ◽  
Y. Gao ◽  
...  

Titania/organically modified silane hybrid thin films for photonic applications were prepared by combining a low temperature sol-gel technique and a spin-coating process from an organic-inorganic hybrid system. Effects of the titanium content and heat treatment temperature on the structural and optical properties of the hybrid thin films were characterized by atomic force microscopy and UV-visible spectroscopy. It is found that the optical and microstructural properties of the hybrid thin films depend on the heat-treatment temperature and titanium molar contents. The thickness and the refractive index of the hybrid thin films were also measured and found to be related to the heat treatment temperature and titanium molar content. These results indicate that a dense and high transparent hybrid thin film can be obtained at a low heat treatment temperature. Potential photonic device structural patterns can easily fabricated from the as-prepared hybrid thin films by using etching process.


2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


2003 ◽  
Vol 769 ◽  
Author(s):  
C. K. Liu ◽  
P. L. Cheng ◽  
S. Y. Y. Leung ◽  
T. W. Law ◽  
D. C. C. Lam

AbstractCapacitors, resistors and inductors are surface mounted components on circuit boards, which occupy up to 70% of the circuit board area. For selected applications, these passives are packaged inside green ceramic tape substrates and sintered at temperatures over 700°C in a co-fired process. These high temperature processes are incompatible with organic substrates, and low temperature processes are needed if passives are to be embedded into organic substrates. A new high permeability dual-phase Nickel Zinc Ferrite (DP NZF) core fabricated using a low temperature sol-gel route was developed for use in embedded inductors in organic substrates. Crystalline NZF powder was added to the sol-gel precursor of NZF. The solution was deposited onto the substrates as thin films and heat-treated at different temperatures. The changes in the microstructures were characterized using XRD and SEM. Results showed that addition of NZF powder induced low temperature transformation of the sol-gel NZF phase to high permeability phase at 250°C, which is approximately 350°C lower than transformation temperature for pure NZF sol gel films. Electrical measurements of DP NZF cored two-layered spiral inductors indicated that the inductance increased by three times compared to inductors without the DP NZF cores. From microstructural observations, the increase is correlated with the changes in microstructural connectivity of the powder phase.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1738
Author(s):  
Saeid Vafaei ◽  
Alexander Wolosz ◽  
Catlin Ethridge ◽  
Udo Schnupf ◽  
Nagisa Hattori ◽  
...  

SnO2 nanoparticles are regarded as attractive, functional materials because of their versatile applications. SnO2 nanoaggregates with single-nanometer-scale lumpy surfaces provide opportunities to enhance hetero-material interfacial areas, leading to the performance improvement of materials and devices. For the first time, we demonstrate that SnO2 nanoaggregates with oxygen vacancies can be produced by a simple, low-temperature sol-gel approach combined with freeze-drying. We characterize the initiation of the low-temperature crystal growth of the obtained SnO2 nanoaggregates using high-resolution transmission electron microscopy (HRTEM). The results indicate that Sn (II) hydroxide precursors are converted into submicrometer-scale nanoaggregates consisting of uniform SnO2 spherical nanocrystals (2~5 nm in size). As the sol-gel reaction time increases, further crystallization is observed through the neighboring particles in a confined part of the aggregates, while the specific surface areas of the SnO2 samples increase concomitantly. In addition, X-ray photoelectron spectroscopy (XPS) measurements suggest that Sn (II) ions exist in the SnO2 samples when the reactions are stopped after a short time or when a relatively high concentration of Sn (II) is involved in the corresponding sol-gel reactions. Understanding this low-temperature growth of 3D SnO2 will provide new avenues for developing and producing high-performance, photofunctional nanomaterials via a cost-effective and scalable method.


Author(s):  
Ajay Saini ◽  
Dalip Singh ◽  
Banwari Lal Choudhary ◽  
Veena Dhayal

Sign in / Sign up

Export Citation Format

Share Document