Characteristics of Ge Nanocrystals Grown by RF Magnetron Sputtering

Author(s):  
R.K. Singha ◽  
K. Das ◽  
S. Das ◽  
A. Dhar ◽  
S.K. Ray
Vacuum ◽  
2008 ◽  
Vol 82 (12) ◽  
pp. 1466-1469 ◽  
Author(s):  
P. Caldelas ◽  
A.G. Rolo ◽  
M.J.M. Gomes ◽  
E. Alves ◽  
A.R. Ramos ◽  
...  

2007 ◽  
Vol 31 ◽  
pp. 89-91 ◽  
Author(s):  
R.K. Singha ◽  
K. Das ◽  
S. Das ◽  
A. Dhar ◽  
S.K. Ray

We report the self-assembled growth of Ge islands of different shapes and sizes on p-Si (001) by r.f. magnetron sputtering by varying the r.f. power, growth temperature and postdeposition annealing condition. The well known Stranski-Krastanov growth mechanism due to lattice mismatch between Si & Ge leads to the formation of Ge islands, similar to a more sophisticated MBE growth, albeit at a much higher pressure in our study. Ge nanocrystals embedded in SiO2 matrix have also been grown. Optical properties of nanocrystals exhibiting visible luminescence at room temperature are presented.


2018 ◽  
Vol 10 (3) ◽  
pp. 03005-1-03005-6 ◽  
Author(s):  
Rupali Kulkarni ◽  
◽  
Amit Pawbake ◽  
Ravindra Waykar ◽  
Ashok Jadhawar ◽  
...  

Author(s):  
Ihab Nabeel Safi ◽  
Basima Mohammed Ali Hussein ◽  
Hikmat J. Aljudy ◽  
Mustafa S. Tukmachi

Abstract Objectives Dental implant is a revolution in dentistry; some shortages are still a focus of research. This study use long duration of radiofrequency (RF)–magnetron sputtering to coat titanium (Ti) implant with hydroxyapatite (HA) to obtain a uniform, strongly adhered in a few micrometers in thickness. Materials and Methods Two types of substrates: discs and root form cylinders were prepared using a grade 1 commercially pure (CP) Ti rod. A RF–magnetron sputtering device was used to coat specimens with HA. Magnetron sputtering was set at 150 W for 22 hours at 100°C under continuous argon gas flow and substrate rotation at 10 rpm. Coat properties were evaluated via field emission scanning electron microscopy (FESEM), scanning electron microscopy–energy dispersive X-ray (EDX) analysis, atomic force microscopy, and Vickers hardness (VH). Student’s t-test was used. Results All FESEM images showed a homogeneous, continuous, and crack-free HA coat with a rough surface. EDX analysis revealed inclusion of HA particles within the substrate surface in a calcium (Ca)/phosphorus (P) ratio (16.58/11.31) close to that of HA. Elemental and EDX analyses showed Ca, Ti, P, and oxygen within Ti. The FESEM views at a cross-section of the substrate showed an average of 7 µm coat thickness. Moreover, these images revealed a dense, compact, and uniform continuous adhesion between the coat layer and the substrate. Roughness result indicated highly significant difference between uncoated Ti and HA coat (p-value < 0.05). A significant improvement in the VH value was observed when coat hardness was compared with the Ti substrate hardness (p-value < 0.05). Conclusion Prolonged magnetron sputtering successfully coat Ti dental implants with HA in micrometers thickness which is well adhered essentially in excellent osseointegration.


2021 ◽  
Vol 129 (24) ◽  
pp. 245303
Author(s):  
Fan Xu ◽  
Yujiao Li ◽  
Beilei Yuan ◽  
Yongzheng Zhang ◽  
Haoming Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document