Optimization of Vibrio harveyi Luminometry Assay for Detecting Quorum Sensing Inhibitors

Author(s):  
Yeon Hee Kim ◽  
Young Hee Kim ◽  
Sung Hoon Park ◽  
Jung Sun Kim
2012 ◽  
Vol 22 (20) ◽  
pp. 6413-6417 ◽  
Author(s):  
Peng Zhu ◽  
Hanjing Peng ◽  
Nanting Ni ◽  
Binghe Wang ◽  
Minyong Li

2005 ◽  
Vol 277-279 ◽  
pp. 19-22
Author(s):  
Yeon Hee Kim ◽  
Y. Kim ◽  
Sung Hoon Park ◽  
Jung Sun Kim

The luminometry assay using the wild-type Vibrio harveyi BB120 was evaluated as a possible detection method for quorum sensing inhibitors. The effects of the concentration of the quorum sensing signal molecule (AHL) as well as the cell density of the reporter strain and the different AHL analogues on luminescence expressed as relative light units (RLU) were examined. Inhibition of V. harveyi luminescence was observed in a dose dependent manner for all five AHL analogues. The RLU values exhibited linearity within the range of 2.9 x 102 ~ 3.2 x 105. Detection up to 102nM was possible for dodecanoyl-homoserine lactone and AHLs with alkyl chain lengths of C-8~C-14 were more active than the shorter chain-lengthed hexanoyl-homoserine lactones. Lipophilicity of the AHL seems to affect the sensitivity of the assay.


2020 ◽  
Vol 26 ◽  
Author(s):  
Madison Tonkin ◽  
Shama Khan ◽  
Mohmmad Younus Wani ◽  
Aijaz Ahmad

: Quorum sensing is defined as cell to cell communication between microorganisms, which enables microorganisms to behave as multicellular organisms. Quorum sensing enables many collaborative benefits such as synchronisation of virulence factors and biofilm formation. Both quorum sensing as well as biofilm formation encourage the development of drug resistance in microorganisms. Biofilm formation and quorum sensing are causally linked to each other and play role in the pathogenesis of microorganisms. With the increasing drug resistance against the available antibiotics and antifungal medications, scientists are combining different options to develop new strategies. Such strategies rely on the inhibition of the communication and virulence factors rather than on killing or inhibiting the growth of the microorganisms. This review encompasses the communication technique used by microorganisms, how microorganism resistance is linked to quorum sensing and various chemical strategies to combat quorum sensing and thereby drug resistance. Several compounds have been identified as quorum sensing inhibitors and are known to be effective in reducing resistance as they do not kill the pathogens but rather disrupt their communication. Natural compounds have been identified as anti-quorum sensing agents. However, natural compounds present several related disadvantages. Therefore, the need for the development of synthetic or semi-synthetic compounds has arisen. This review argues that anti-quorum sensing compounds are effective in disrupting quorum sensing and could therefore be effective in reducing microorganism drug resistance.


Sign in / Sign up

Export Citation Format

Share Document