Heat Integration and Storage Concepts for Increasing the Energy Efficiency in Domestic Households

2016 ◽  
Vol 19 ◽  
pp. 50-58 ◽  
Author(s):  
Michael Beck ◽  
Karsten Müller ◽  
Wolfgang Arlt

A promising approach for increasing the energy efficiency of domestic households and buildings is to optimize the whole energy system by coupling of different heat sources and sinks. This procedure, known as heat integration, is state of the art in the industrial sector and is now applied to the residential sector. In this work several options for increasing the energy efficiency and for recovering waste heat are discussed. In order to reduce the primary energy demand different waste heat sources like domestic hot water or household appliances (refrigerators or freezers) were evaluated. The first step is the development of an advanced form of the stationary Pinch Analysis. This was subsequently applied to determine the thermodynamically possible energy saving for a single family home.

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4337
Author(s):  
Daniel González-Prieto ◽  
Yolanda Fernández-Nava ◽  
Elena Marañón ◽  
Maria Manuela Prieto

The use of lightweight concrete for the construction of single-family houses has become increasingly popular in Spain. In this paper, single-family houses with different shape factors and window-to-wall ratios are analysed from both a thermal and environmental perspective using Passive House Planning Package (PHPP) software to calculate the energy demand. The study has been carried out for different Atlantic microclimates (coastal, inland, and mountain) in northern Spain. What most affects the thermal energy used for air conditioning is the variation of the microclimates, so the study focuses mainly on this aspect. Operational energy for heating has decreased greatly via the use of high degree of insulation and hence the next task is to decrease the total energy consumed taking into account the embodied energy. Impacts on Primary Energy and Global Warming Potential are calculated using a cradle-to-grave approach. The energy use for heating and domestic hot water is analysed for different thicknesses of insulation under three energy supply scenarios: electricity only (for 2018 and with the Spanish decarbonisation plan for 2030); heat pump plus electricity; and natural gas boiler. Even for houses with a good level of insulation, the ratio of operational-to-total impacts varies significantly: from 46% to 87% for primary energy and from 31% to 75% for global warming potential, depending on the shape factor of the house, the microclimate and the heat supply scenario. By applying future environmental policies, electricity can become a more environmentally friendly option than natural gas.


2018 ◽  
Vol 44 ◽  
pp. 00162 ◽  
Author(s):  
Kamil Skoneczny

In the article it was discussed how the energy efficiency of the air-to-water heat pump can change depending on the different ways of the building usage. The author shows that the following factors influence this efficiency: the DHW demand and the demand of the energy for the heating of the building. The article shows that it is very important to take into account the cooperation of both systems, the DHW and the heating. Two models of the SCOP calculations were discussed: in monthly and hourly steps of the calculation. For each model the following assumptions were considered: the different profiles of the domestic hot water demand and the different profiles of the demand for the heating of building.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1582 ◽  
Author(s):  
Conti ◽  
Schito ◽  
Testi

This paper analyzes the use of hybrid photovoltaic/thermal (PVT) collectors in nearly zero-energy buildings (NZEBs). We present a design methodology based on the dynamic simulation of the whole energy system, which includes the building energy demand, a reversible heat pump as generator, the thermal storage, the power exchange with the grid, and both thermal and electrical energy production by solar collectors. An exhaustive search of the best equipment sizing and design is performed to minimize both the total costs and the non-renewable primary energy consumption over the system lifetime. The results show that photovoltaic/thermal technology reduces the non-renewable primary energy consumption below the nearly zero-energy threshold value, assumed as 15 kWh/(m2·yr), also reducing the total costs with respect to a non-solar solution (up to 8%). As expected, several possible optimal designs exist, with an opposite trend between energy savings and total costs. In all these optimal configurations, we figure out that photovoltaic/thermal technology favors the production of electrical energy with respect to the thermal one, which mainly occurs during the summer to meet the domestic hot water requirements and lower the temperature of the collectors. Finally, we show that, for a given solar area, photovoltaic/thermal technology leads to a higher reduction of the non-renewable primary energy and to a higher production of solar thermal energy with respect to a traditional separate production employing photovoltaic (PV) modules and solar thermal (ST) collectors.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1012
Author(s):  
Francesco Calise ◽  
Francesco L. Cappiello ◽  
Maria Vicidomini ◽  
Jian Song ◽  
Antonio M. Pantaleo ◽  
...  

In this research, a technoeconomic comparison of energy efficiency options for energy districts located in different climatic areas (Naples, Italy and Fayoum, Egypt) is presented. A dynamic simulation model based on TRNSYS is developed to evaluate the different energy efficiency options, which includes different buildings of conceived districts. The TRNSYS model is integrated with the plug-in Google SketchUp TRNSYS3d to estimate the thermal load of the buildings and the temporal variation. The model considers the unsteady state energy balance and includes all the features of the building’s envelope. For the considered climatic zones and for the different energy efficiency measures, primary energy savings, pay back periods and reduced CO2 emissions are evaluated. The proposed energy efficiency options include a district heating system for hot water supply, air-to-air conventional heat pumps for both cooling and space heating of the buildings and the integration of photovoltaic and solar thermal systems. The energy actions are compared to baseline scenarios, where the hot water and space heating demand is satisfied by conventional natural gas boilers, the cooling demand is met by conventional air-to-air vapor compression heat pumps and the electric energy demand is satisfied by the power grid. The simulation results provide valuable guidance for selecting the optimal designs and system configurations, as well as suggest guidelines to policymakers to define decarbonization targets in different scenarios. The scenario of Fayoum offers a savings of 67% in primary energy, but the associated payback period extends to 23 years due to the lower cost of energy in comparison to Naples.


Author(s):  
H. X. Liang ◽  
Q. W. Wang

This paper deals with the problem of energy utilization efficiency evaluation of a microturbine system for Combined Cooling, Heating and Power production (CCHP). The CCHP system integrates power generation, cooling and heating, which is a type of total energy system on the basis of energy cascade utilization principle, and has a large potential of energy saving and economical efficiency. A typical CCHP system has several options to fulfill energy requirements of its application, the electrical energy can be produced by a gas turbine, the heat can be generated by the waste heat of a gas turbine, and the cooling load can be satisfied by an absorption chiller driven by the waste heat of a gas turbine. The energy problem of the CCHP system is so large and complex that the existing engineering cannot provide satisfactory solutions. The decisive values for energetic efficiency evaluation of such systems are the primary energy generation cost. In this paper, in order to reveal internal essence of CCHP, we have analyzed typical CCHP systems and compared them with individual systems. The optimal operation of this system is dependent upon load conditions to be satisfied. The results indicate that CCHP brings 38.7 percent decrease in energy consumption comparing with the individual systems. A CCHP system saves fuel resources and has the assurance of economic benefits. Moreover, two basic CCHP models are presented for determining the optimum energy combination for the CCHP system with 100kW microturbine, and the more practical performances of various units are introduced, then Primary Energy Ratio (PER) and exergy efficiency (α) of various types and sizes systems are analyzed. Through exergy comparison performed for two kinds of CCHP systems, we have identified the essential principle for high performance of the CCHP system, and consequently pointed out the promising features for further development.


2021 ◽  
Author(s):  
Osamah Alsayegh

Abstract This paper examines the energy transition consequences on the oil and gas energy system chain as it propagates from net importing through the transit to the net exporting countries (or regions). The fundamental energy system security concerns of importing, transit, and exporting regions are analyzed under the low carbon energy transition dynamics. The analysis is evidence-based on diversification of energy sources, energy supply and demand evolution, and energy demand management development. The analysis results imply that the energy system is going through technological and logistical reallocation of primary energy. The manifestation of such reallocation includes an increase in electrification, the rise of energy carrier options, and clean technologies. Under healthy and normal global economic growth, the reallocation mentioned above would have a mild effect on curbing the oil and gas primary energy demands growth. A case study concerning electric vehicles, which is part of the energy transition aspect, is presented to assess its impact on the energy system, precisely on the fossil fuel demand. Results show that electric vehicles are indirectly fueled, mainly from fossil-fired power stations through electric grids. Moreover, oil byproducts use in the electric vehicle industry confirms the reallocation of the energy system components' roles. The paper's contribution to the literature is the portrayal of the energy system security state under the low carbon energy transition. The significance of this representation is to shed light on the concerns of the net exporting, transit, and net importing regions under such evolution. Subsequently, it facilitates the development of measures toward mitigating world tensions and conflicts, enhancing the global socio-economic wellbeing, and preventing corruption.


2013 ◽  
Vol 769 ◽  
pp. 319-326 ◽  
Author(s):  
Martin Beck ◽  
Tilo Sielaff

Industrial enterprises are increasingly driven to tap the potentials of energy efficiency in existing and future production sites. The challenge is to identify cost-efficient levers for a low energy demand in the linked energy system of production machines and peripheral devices. Considering enabling technologies for energy efficiency and energy recovery in a cascaded energy network with energy storages this paper presents an approach towards energy and cost-efficient system configurations for production sites. An outlook will be given on the research center eta-factory for energy efficient factories at the PTW, TU Darmstadt.


2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1143-1151 ◽  
Author(s):  
Karol Sztekler ◽  
Wojciech Kalawa ◽  
Sebastian Stefanski ◽  
Jaroslaw Krzywanski ◽  
Karolina Grabowska ◽  
...  

At present, energy efficiency is a very important issue and it is power generation facilities, among others, that have to confront this challenge. The simultaneous production of electricity, heat and cooling, the so-called trigeneration, allows for substantial savings in the chemical energy of fuels. More efficient use of the primary energy contained in fuels translates into tangible earnings for power plants while reductions in the amounts of fuel burned, and of non-renewable resources in particular, certainly have a favorable impact on the natural environment. The main aim of the paper was to investigate the contribution of the use of adsorption chillers to improve the energy efficiency of a conventional power plant through the utilization of combined heat and power waste heat, involving the use of adsorption chillers. An adsorption chiller is an item of industrial equipment that is driven by low grade heat and intended to produce chilled water and desalinated water. Nowadays, adsorption chillers exhibit a low coefficient of performance. This type of plant is designed to increase the efficiency of the primary energy use. This objective as well as the conservation of non-renewable energy resources is becoming an increasingly important aspect of the operation of power generation facilities. As part of their project, the authors have modelled the cycle of a conventional heat power plant integrated with an adsorption chiller-based plant. Multi-variant simulation calculations were performed using IPSEpro simulation software.


2016 ◽  
Vol 861 ◽  
pp. 198-205
Author(s):  
Anton Pitonak ◽  
Martin Lopusniak

In the members states of the European Union, portion of buildings in the total consumption of energy represents 40%, and their portion in CO2 emissions fluctuates around 35%. The European Union is trying to protect the environment by reducing energy demand and releasing CO2 emissions into the air. Energy performance is the quantity of energy, which is necessary for heating and domestic hot water production, for cooling and ventilation and for lighting. Based on results of energy performance, individual buildings are classified into energy classes A to G. A global indicator (primary energy) is the decisive factor for final evaluation of the building. The new building must meet minimum requirements for energy performance, i.e. it must be classified to energy class A1 since 2016, and to energy class A0 since 2020. The paper analyses effect of the use of different resources of heat in a family house designed according to requirements valid since 2020, and its subsequent classification into an energy class.


Author(s):  
M. Deligant ◽  
S. Braccio ◽  
T. Capurso ◽  
F. Fornarelli ◽  
M. Torresi ◽  
...  

Abstract The Organic Rankine Cycle (ORC) allows the conversion of low-grade heat sources into electricity. Although this technology is not new, the increase in energy demand and the need to reduce CO2 emissions create new opportunities to harvest low grade heat sources such as waste heat. Radial turbines have a simple construction, they are robust and they are not very sensitive to geometry inaccuracies. Most of the radial inflow turbines used for ORC application feature a vaned nozzle ensuring the appropriate distribution angle at the rotor inlet. In this work, no nozzle is considered but only the vaneless gap (distributor). This configuration, without any vaned nozzle, is supposed to be more flexible under varying operating conditions with respect to fixed vanes and to maintain a good efficiency at off-design. This paper presents a performance analysis carried out by means of two approaches: a combination of meanline loss models enhanced with real gas fluid properties and 3D CFD computations, taking into account the entire turbomachine including the scroll housing, the vaneless gap, the turbine wheel and the axial discharge pipe. A detailed analysis of the flow field through the turbomachine is carried out, both under design and off design conditions, with a particular focus on the entropy field in order to evaluate the loss distribution between the scroll housing, the vaneless gap and the turbine wheel.


Sign in / Sign up

Export Citation Format

Share Document