Study on a Micro-Force Generated Mechanism for Sensor Calibration

2011 ◽  
Vol 103 ◽  
pp. 292-298
Author(s):  
Yong Wang ◽  
Jing Hui Sun ◽  
Zheng Shi Liu ◽  
Huan Jin Liu

The current method of micro-force generated for sensor calibration is scarcity and complexity. In the paper we propose a mechanism based on flexible hinges for micro-force, illustrate its working principle and establish the mechanical model. By theoretical analysis the analytical expression of the force reduction multiplier is derived. After initializing some parameters, the result shows that this mechanism can produce the large range and high resolution force of µN. The force can be applied in calibration of micro-force sensor.

2013 ◽  
Vol 56 (8) ◽  
pp. 1940-1948 ◽  
Author(s):  
WeiHai Chen ◽  
Jun Jiang ◽  
WenJie Chen ◽  
JingMeng Liu

Author(s):  
Lai Yu Leo Tse ◽  
Kira Barton

Electrohydrodynamic jet (e-jet) printing is a growing technology for high resolution (<20μm) printing. It enjoys the advantages of other additive manufacturing technologies and is compatible with a large range of materials. E-jet applications include electronic fabrication, high-resolution prototyping, and bio-medical devices. Despite the diverse range of applications, e-jet printing dynamics are sensitive to varying standoff heights and changing electric fields. As such, conventional e-jet printing generally consists of a conductive nozzle printing onto a flat, conductive substrate. To address this limitation, this paper presents an airflow assisted e-jet printhead that is shown to greatly reduce the substrate effects while providing good printing resolution (<15μm). The working principle and design challenges are provided. Experimental demonstrations validate the performance capabilities of the modified e-jet printhead.


2014 ◽  
Vol 599-601 ◽  
pp. 1135-1138
Author(s):  
Chao Zhe Ma ◽  
Jin Song Du ◽  
Yi Yang Liu

At present, sub-micro-Newton (sub-μN) micro-force in micro-assembly and micro-manipulation is not able to be measured reliably. The piezoelectric micro-force sensors offer a lot of advantages for MEMS applications such as low power dissipation, high sensitivity, and easily integrated with piezoelectric micro-actuators. In spite of many advantages above, the research efforts are relatively limited compared to piezoresistive micro-force sensors. In this paper, Sensitive component is polyvinylidene fluoride (PVDF) and the research object is micro-force sensor based on PVDF film. Moreover, the model of micro-force and sensor’s output voltage is built up, signal processing circuit is designed, and a novel calibration method of micro-force sensor is designed to reliably measure force in the range of sub-μN. The experimental results show the PVDF sensor is designed in this paper with sub-μN resolution.


Micromachines ◽  
2017 ◽  
Vol 8 (10) ◽  
pp. 304
Author(s):  
Huan Liu ◽  
Zhongliang Yu ◽  
Yan Liu ◽  
Xudong Fang

Sensor Review ◽  
2018 ◽  
Vol 38 (4) ◽  
pp. 405-411
Author(s):  
Zhanshe Guo ◽  
Zhaojun Guo ◽  
Xiangdang Liang ◽  
Shen Liu

Purpose Biomechanical properties of bones and fixators are important. The aim of this study was to develop a new device to simulate the real mechanical environment and to evaluate biomechanical properties of the bone with a fixation device, including the static force and the fatigue characters. Design/methodology/approach In this paper, the device is mainly composed of three parts: pull-pressure transmission system, bending force applying system and torsion applying system, which can successfully simulate the pre-introduced pull-pressure force, bending force and torsion force, respectively. To prove the feasibility of the design, theoretical analysis is used. It is concluded from the simulated result that this scheme of design can successfully satisfy the request of the evaluation. Findings Finally, on the basis of the force sensor calibration, the static force experiment and fatigue experiment are carried out using the tibia of the sheep as the specimen. It is concluded from the result that the relationship between the micro displacement and the applied axial force is nearly linear. Under the condition of 1 Hz in frequency, 500 N in loading force and 18,000 reciprocating cycles, the bone fixator can still be in good condition, which proves the feasibility of the design. Originality/value Biomechanical properties of bones and fixators are studied by researchers. However, few simulate a real force environment and combine forces in different directions. So a novel system is designed and fabricated to evaluate the biomechanical properties of the bones and fixators. Results of the experiments show that this new system is reliable and stable, which can support the biomechanical study and clinical treatment.


2020 ◽  
Vol 238 ◽  
pp. 12009
Author(s):  
Walter S. J. Ferreira ◽  
Paulo S. S. dos Santos ◽  
Paulo Caldas ◽  
Pedro A. S. Jorge ◽  
João M. S. Sakamoto

In this work, a long-period fiber grating (LPG) based sensor was evaluated as a sensing device for micro-force measurement, in the order of micro Newtons. It was used an LPG fabricated by arc-inducted technique in a SMF-28 standard optical fiber. The optical fiber was fixed between two clamps with a separation of 150 mm with the middle of the LPG located at the center. Characterizations were performed in terms of temperature, curvature and strain. The grating was then used as a micro-force sensor by means of both curvature and strain, induced by a hung mass in a stretched fiber. Furthermore, the evaluation of a precurvature LPG was performed to assess if an increase of sensitivity is achieved. Micro-force sensitivity achieved with the stretched LPG was 1.41 nm/mN and it was demonstrated that its sensitivity can be enhanced to 5.14 nm/mN with a pre-curvature of 2.2 m–1 applied to the LPG, achieving a spectral resolution of at least 15.6 μN.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6042
Author(s):  
Zhijian Zhang ◽  
Youping Chen ◽  
Dailin Zhang

In robot teaching for contact tasks, it is necessary to not only accurately perceive the traction force exerted by hands, but also to perceive the contact force at the robot end. This paper develops a tandem force sensor to detect traction and contact forces. As a component of the tandem force sensor, a cylindrical traction force sensor is developed to detect the traction force applied by hands. Its structure is designed to be suitable for humans to operate, and the mechanical model of its cylinder-shaped elastic structural body has been analyzed. After calibration, the cylindrical traction force sensor is proven to be able to detect forces/moments with small errors. Then, a tandem force sensor is developed based on the developed cylindrical traction force sensor and a wrist force sensor. The robot teaching experiment of drawer switches were made and the results confirm that the developed traction force sensor is simple to operate and the tandem force sensor can achieve the perception of the traction and contact forces.


Sign in / Sign up

Export Citation Format

Share Document