Finite Element Simulation of Surface Roughness of an Al-5052 Plate Processed by Shot Peening

2011 ◽  
Vol 109 ◽  
pp. 136-140
Author(s):  
Jiao Xia Lan ◽  
Mei Li Wang ◽  
Yan Hong Wang ◽  
Xue Jing Shen

The evolution of surface roughness of Al-5052 plate subjected to shot peening was simulated by means of LS-DYNA, and the influences of variation of parameters, such as the size of shot, the velocity of shot, the density of shot, strength coefficient, strain hardening exponent, friction coefficient and incident angle, were investigated. Moreover, the effect of space ratio of two shots was also studied. The simulated results, analytical results and experimental results were compared, and the results showed that the simulated results were agreement with experimental results and analytical results, that the important roles played by the shot size and shot velocity, but to a much lesser extent by the other parameters.

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1206
Author(s):  
Suhyun Lee ◽  
Soohyeon Rho ◽  
Daeyoung Lim ◽  
Wonyoung Jeong

This study aimed to establish an automatic sewing process for garment production according to textile properties. An automatic feeding system and a self-made template were introduced to an industrial sewing machine. Two types of stitches were performed on fabrics with various physical properties and surface roughness using this automatic sewing machine. The appearance, stitch length and width, seam strength, and seam efficiency were evaluated according to the sewing conditions, such as presser height and sewing speed. In addition, the correlation between textile properties, sewing conditions, and sewability was analyzed to derive a regression equation for sewability. The evaluation showed no difference in the lock stitch condition. On the other hand, under the zigzag stitch condition, the stitch width differed according to the presser height, which also affected the seam structure. The optimal presser height for each fabric was derived from the experimental results. In terms of the sewing speed, however, the seam strength was the best at 200 RPM in the lock stitch and 400 RPM in the zigzag stitch. The moderating effect of the presser height between textile properties and sewability in the lock stitch condition was confirmed. This result can be used as basic data for establishing an automatic sewing process for smart factories.


Author(s):  
Hamid Soleimanimehr

Due to its numerous advantages such as reduction of machining force and surface roughness, ultrasonic-vibration assisted turning process has been extensively investigated. In the present paper, a new vibration analysis has been done and it has been shown that in the case of rigid workpiece or stable cutting ratio, negligible diametrical error is created by tool vibration in vibration turning which is not present in conventional turning. On the other part of the study, flexible workpiece has been considered and workpiece deformation has been investigated. It has been shown that in this case, the cutting ratio experiences an increasing trend from spindle to free end of one-end fixed workpiece. It has been also shown that the experimental results are in good agreement with analysis. Workpiece diametrical error in conventional turning is about twice in vibration turning.


Author(s):  
Atul Khatri ◽  
Vinod Yadava

The final machining (or finishing) of precision parts with high accuracy level is making the application of abrasive finishing technologies increasingly important. Magnetic abrasive finishing (MAF) is a new advanced finishing process used for fine finishing of extremely hard materials. It is employed for finishing of metals and non-metals. This paper focuses on the modeling and simulation for the prediction of surface roughness in plane magnetic abrasive finishing. A finite element based model is developed to find the magnetic potential distribution in gap between tool and workpiece. Further, magnetic potential is used to evaluate machining pressure, material removal and finally surface roughness of the workpiece surface. The simulation results are confirmed compared with the experimental results available in the literature. The simulated workpiece surface roughness shows features which are similar in nature to the experimental results.


Author(s):  
Scott Lordi

Vicinal Si (001) surfaces are interesting because they are good substrates for the growth of III-V semiconductors. Spots in RHEED patterns from vicinal surfaces are split due to scattering from ordered step arrays and this splitting can be used to determine the misorientation angle, using kinematic arguments. Kinematic theory is generally regarded to be inadequate for the calculation of RHEED intensities; however, only a few dynamical RHEED simulations have been attempted for vicinal surfaces. The multislice formulation of Cowley and Moodie with a recently developed edge patching method was used to calculate RHEED patterns from vicinal Si (001) surfaces. The calculated patterns are qualitatively similar to published experimental results and the positions of the split spots quantitatively agree with kinematic calculations.RHEED patterns were calculated for unreconstructed (bulk terminated) Si (001) surfaces misoriented towards [110] ,with an energy of 15 keV, at an incident angle of 36.63 mrad ([004] bragg condition), and a beam azimuth of [110] (perpendicular to the step edges) and the incident beam pointed down the step staircase.


1994 ◽  
Vol 29 (4) ◽  
pp. 127-132 ◽  
Author(s):  
Naomi Rea ◽  
George G. Ganf

Experimental results demonstrate bow small differences in depth and water regime have a significant affect on the accumulation and allocation of nutrients and biomass. Because the performance of aquatic plants depends on these factors, an understanding of their influence is essential to ensure that systems function at their full potential. The responses differed for two emergent species, indicating that within this morphological category, optimal performance will fall at different locations across a depth or water regime gradient. The performance of one species was unaffected by growth in mixture, whereas the other performed better in deep water and worse in shallow.


2021 ◽  
Vol 40 (1) ◽  
pp. 551-563
Author(s):  
Liqiong Lu ◽  
Dong Wu ◽  
Ziwei Tang ◽  
Yaohua Yi ◽  
Faliang Huang

This paper focuses on script identification in natural scene images. Traditional CNNs (Convolution Neural Networks) cannot solve this problem perfectly for two reasons: one is the arbitrary aspect ratios of scene images which bring much difficulty to traditional CNNs with a fixed size image as the input. And the other is that some scripts with minor differences are easily confused because they share a subset of characters with the same shapes. We propose a novel approach combing Score CNN, Attention CNN and patches. Attention CNN is utilized to determine whether a patch is a discriminative patch and calculate the contribution weight of the discriminative patch to script identification of the whole image. Score CNN uses a discriminative patch as input and predict the score of each script type. Firstly patches with the same size are extracted from the scene images. Secondly these patches are used as inputs to Score CNN and Attention CNN to train two patch-level classifiers. Finally, the results of multiple discriminative patches extracted from the same image via the above two classifiers are fused to obtain the script type of this image. Using patches with the same size as inputs to CNN can avoid the problems caused by arbitrary aspect ratios of scene images. The trained classifiers can mine discriminative patches to accurately identify some confusing scripts. The experimental results show the good performance of our approach on four public datasets.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hossein Ahmadvand ◽  
Fouzhan Foroutan ◽  
Mahmood Fathy

AbstractData variety is one of the most important features of Big Data. Data variety is the result of aggregating data from multiple sources and uneven distribution of data. This feature of Big Data causes high variation in the consumption of processing resources such as CPU consumption. This issue has been overlooked in previous works. To overcome the mentioned problem, in the present work, we used Dynamic Voltage and Frequency Scaling (DVFS) to reduce the energy consumption of computation. To this goal, we consider two types of deadlines as our constraint. Before applying the DVFS technique to computer nodes, we estimate the processing time and the frequency needed to meet the deadline. In the evaluation phase, we have used a set of data sets and applications. The experimental results show that our proposed approach surpasses the other scenarios in processing real datasets. Based on the experimental results in this paper, DV-DVFS can achieve up to 15% improvement in energy consumption.


Sign in / Sign up

Export Citation Format

Share Document