The Mathematical Model of Online Quenching for Extruding Bar of 6061 Aluminum Alloy

2011 ◽  
Vol 117-119 ◽  
pp. 1798-1801
Author(s):  
Yi Lin ◽  
De Zhi Li ◽  
Jian Min Zeng ◽  
Ping Chen ◽  
Li Hua Liang

A simple mathematical model that correlates the temperature and extrusion speed of a 6061 aluminum bar extruded from the die has been established based on the principle of heat transfer in this paper. The 6061 alloy bar is extruded from the die orifice and is cooled through heat exchanged between the bar and ambient. The temperature of the bar decreases as the distance increases away from the die orifice. The more rapidly the temperature drops, the slower the extrusion speed is. A flexible online quenching apparatus has been set up before the critical quenching position to guarantee good supersaturation of alloying elements. The calculations have shown that at the extrusion speeds of 10m/min, 15 m/min and 20 m/min, the critical quenching positions are 0.44m, 0.88m and 1.30m from the die orifice, respectively for the temperature of 520°C; and for the different temperatures, the critical quenching positions from the die orifice are 0.66m, 1.31m, 1.95m at 530°C and 0.88m, 1.75m, 2.6m at 540°C, respectively.

2014 ◽  
Vol 945-949 ◽  
pp. 777-780
Author(s):  
Tao Liu ◽  
Yong Xu ◽  
Bo Yuan Mao

Firstly, according to the structure characteristics of precision centrifuge, the mathematical model of its dynamic balancing system was set up, and the dynamic balancing scheme of double test surfaces, double emendation surfaces were established. Then the dynamic balance system controller of precision centrifuge was designed. Simulation results show that the controller designed can completely meet the requirements of precision centrifuge dynamic balance control system.


2021 ◽  
Vol 1 (2) ◽  
pp. 12-20
Author(s):  
Najmeh Keshtkar ◽  
Johannes Mersch ◽  
Konrad Katzer ◽  
Felix Lohse ◽  
Lars Natkowski ◽  
...  

This paper presents the identification of thermal and mechanical parameters of shape memory alloys by using the heat transfer equation and a constitutive model. The identified parameters are then used to describe the mathematical model of a fiber-elastomer composite embedded with shape memory alloys. To verify the validity of the obtained equations, numerical simulations of the SMA temperature and composite bending are carried out and compared with the experimental results.


2020 ◽  
Vol 18 (4) ◽  
pp. 578-585
Author(s):  
Madina Shavdinova ◽  
Konstantin Aronson ◽  
Nina Borissova

The condensing unit is one of the most important elements of the steam turbine of a combined heat and power plant. Defects in elements of the condensing unit lead to disturbances in the steam turbine operation, its failures and breakdowns, as well as efficiency losses of the plant. Therefore, the operating personnel need to know the cause of the malfunction and to correct it immediately. There are no diagnostic models of condensers in the Republic of Kazakhstan at the moment. In this regard, a mathematical model of a condenser based on the methodology of Kaluga Turbine Plant (KTP) has been developed. The mathematical model makes it possible to change the input parameters, plot dependency diagrams, and calculate the plant efficiency indicators. The mathematical model of the condenser can be used to research ways for the improvement of the condensing unit efficiency, for diagnostic purposes of the equipment condition, for the energy audit conduction of the plant, and in the training when performing virtual laboratory research. Using static data processing by linear regression method we obtain that the KTP methodology of condenser calculation is fair at cooling water temperature from 20 °C to 24 °C, but at cooling water temperature from 20 °C to 28 °C, the methodology of JSC "All-Russia Thermal Engineering Institute" (JSC "VTI") is used. One of the ways to increase the condenser efficiency has been proposed. It is the heat transfer augmentation with riffling annular grooves on tubes. This method increases the heat transfer coefficient by 2%, reduces the water subcooling of the heating steam by 0.9 °C, and decreases the cooling area by 2%.


2018 ◽  
Vol 38 (3) ◽  
pp. 321-327
Author(s):  
Jingfu Jia ◽  
Manjin Hao ◽  
Jianhua Zhao

Forced or natural ventilation is the most common measure of frost heave protection for refrigerated warehouse floor. To optimize air velocity for the underfloor forced ventilation system of refrigerated warehouse, a steady state three-dimensional mathematical model of heat transfer is set up in this paper. The temperature fields of this system are simulated and calculated by CFD software PHOENICS under different air velocity, 1.5m/s, 2.5m/s or 3.5m/s. The results show that the optimized air velocity is 1.5m/s when the tube spacing is 1.5m.


2009 ◽  
Vol 16 (5) ◽  
pp. 467-480 ◽  
Author(s):  
Nader Vahdati ◽  
Mehdi Ahmadian

Passive fluid mounts are used in the fixed wing applications as engine mounts. The passive fluid mount is placed in between the engine and the fuselage to reduce the cabin's structure- borne noise and vibration generated by the engine.To investigate the benefits of passive fluid mounts used in conjunction with tuned vibration absorbers (TVA), a simple mathematical model is developed. This mathematical model includes the mathematical model of a passive fluid mount, a TVA, and a spring representing the fuselage structure. The simulation results indicate that when passive fluid mounts are used in conjunction with TVAs, an active suspension system behavior is nearly created.


Author(s):  
Jia Xiaohong ◽  
Ji Linhong ◽  
Jin Dewen ◽  
Zhang Jichuan

Abstract Clearance is inevitable in the kinematic joints of mechanisms. In this paper the dynamic behavior of a crank-slider mechanism with clearance in its tripod-ball sliding joint is investigated theoretically and experimentally. The mathematical model of this new-type joint is established, and the new concepts of basal system and active system are put forward. Based on the mode-change criterion established in this paper, the consistent equations of motion in full-scale are derived by using Kane method. The experimental rig was set up to measure the effects of the clearance on the dynamic response. Corresponding experimental studies verify the theoretical results satisfactorily. In addition, due to the nonlinear elements in the improved mathematical model of the joint with clearance, the chaotic responses are found in numerical simulation.


Author(s):  
Zhan-Song Yin ◽  
Hon-Xiong Huang

A mathematical model of the transient heat transfer during the cooling and solidification of extrusion blow molded part was developed. The temperature profiles were obtained by using finite element (FE) code POLYFLOW to solve the mathematical model. The influences of blow mold material, internal heat transfer coefficient, part thickness, and initial parison temperature on cooling were analyzed. An orthogonal experimental design was applied to determine the significance of four process parameters on the time for opening the mold. The calculated results were estimated by analysis of variance (ANVOA). An artificial neural network (ANN) model based on the numerical simulation data was developed to build for predicting the temperature distribution across thickness. The results showed that ANN approach was an effective method for analyzing the cooling of blow molded part.


1986 ◽  
Vol 10 (3) ◽  
pp. 141-152
Author(s):  
H.M. Badr ◽  
S.M. Ahmed

The aim of this work is a theoretical investigation to the problem of heat transfer from an isothermal horizontal cylinder rotating in a quiescent fluid. The study is based on the solution of the conservation equations of mass, momentum and energy for two-dimensional flow of a Boussinesq fluid. The effects of the parameters which influence the heat transfer process namely the Reynolds number and Grashof number are considered while the Prandtl number is held constant. Streamline and isotherm patterns are obtained from the mathematical model and the results are compared with previous experimental data. A satisfactory agreement was found.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2866
Author(s):  
Jintong Liu ◽  
Anan Zhao ◽  
Piao Wan ◽  
Huiyue Dong ◽  
Yunbo Bi

Interlayer burrs formation during drilling of stacked plates is a common problem in the field of aircraft assembly. Burrs elimination requires extra deburring operations which is time-consuming and costly. An effective way to inhibit interlayer burrs is to reduce the interlayer gap by preloading clamping force. In this paper, based on the theory of plates and shells, a mathematical model of interlayer gap with bidirectional clamping forces was established. The relationship between the upper and lower clamping forces was investigated when the interlayer gap reaches zero. The optimization of the bidirectional clamping forces was performed to reduce the degree and non-uniformity of the deflections of the stacked plates. Then, the finite element simulation was conducted to verify the mathematical model. Finally, drilling experiments were carried out on 2024-T3 aluminum alloy stacked plates based on the dual-machine-based automatic drilling and riveting system. The experimental results show that the optimized bidirectional clamping forces can significantly reduce the burr heights. The work in this paper enables us to understand the effect of bidirectional clamping forces on the interlayer gap and paves the way for the practical application.


Sign in / Sign up

Export Citation Format

Share Document