The Factors that Affect the Absorption of CO2 on the Lithium Zirconate Materials

2011 ◽  
Vol 117-119 ◽  
pp. 769-772
Author(s):  
Yin Jie Wang ◽  
Ji Ping Liu ◽  
Mei Xiu Kan ◽  
Xiao Bing Lu

Use the Monoclinic phase of nano-scale ZrO2 , Li2ZrO3 and MgO as raw materials, with high temperature solid state reaction, we synthesized the Lithium zirconate materials which can directly absorb CO2 at high temperatures of 450~550°C. Then use the scanning electron microscopy (SEM) and X-ray diffraction (XRD) for the morphology and structure analysis. The CO2 absorption properties were tested by thermal analyzer (TG). The experimental results showed that the amount of MgO addition affected the Lithium zirconate’s CO2 absorption properties, but to the pH and surface area, there is on influence.

2021 ◽  
Vol 325 ◽  
pp. 181-187
Author(s):  
Martin Nguyen ◽  
Radomír Sokolář

This article examines the influence of fly ash on corrosion resistance of refractory forsterite-spinel ceramics by molten iron as a corrosive medium. Fly ash in comparison with alumina were used as raw materials and sources of aluminium oxide for synthesis of forsterite-spinel refractory ceramics. Raw materials were milled, mixed in different ratios into two sets of mixtures and sintered at 1550°C for 2 hours. Samples were characterized by X-ray diffraction analysis and thermal dilatometric analysis. Crucibles were then made from the fired ceramic mixtures and fired together with iron at its melting point of 1535°C for 5 hours. The corrosion resistance was evaluated by scanning electron microscopy on the transition zones between iron and ceramics. Mixtures with increased amount of spinel had higher corrosion resistance and mixtures with fly ash were comparable to mixtures with alumina in terms of corrosion resistance and refractory properties.


2011 ◽  
Vol 306-307 ◽  
pp. 1225-1228 ◽  
Author(s):  
Ji Qi ◽  
Chen Niu

Vanadium dioxides (VO2) is synthesized by hydrothermal method. In this process,V2O5 powder is used as raw materials,cetyltrimethylammonium bromide (CTAB) is used as template and different alcohols such as methanol, ethanol, propanol and butanol are used as reductants. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to test the properties of VO2 nanoparticles. The results show that VO2(B) nano-particles were succsessfully synthesized under the conditions of thermal reduction temperature 180°C, reaction time 24h and drying temperature 60°C. The variety of alcoholic reducing agents plays an important role in the structure and morphology of the product VO2(B), which relates closly to the electric properties of materials.


2016 ◽  
Vol 680 ◽  
pp. 257-260
Author(s):  
Meng Yun Dong ◽  
Cheng Zhang ◽  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
Dan Yu Jiang

CaF2 nano-power was prepared by direct precipitation methods with Ca(NO3)2 and KF as raw materials. The influences of presintering temperature and sintering temperature on the particle size and distribution of CaF2 nano-power were studied by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). This study provided an experimental method for preparation of CaF2 nano-power. The results show that the best presintering temperature of CaF2 nano-power is 500°C and the best sintering temperature of CaF2 ceramic is 900°C.


2012 ◽  
Vol 512-515 ◽  
pp. 1023-1027
Author(s):  
Ran Fang Zuo ◽  
Gao Xiang Du ◽  
Le Fu Mei ◽  
Wei Juan Guo ◽  
Jing Hui Liao

The main objective of this paper was to investigate the addition of iron tailing sintering brick production, in the presence of clay, coal refuses and bentonite. Mixtures containing raw materials of sintering brick and iron tailings were prepared at different proportions (up to 55 wt %), fired at 980°C. Freeze/thaw durability, drying and firing shrinkages were investigated as well as the loss on ignition, bulk density and compressive strength of the fired samples. Their mechanical and microstructure properties were also investigated by differential thermal analysis (DTA/TG), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that compressive strengths of the brick samples are higher than that required by the standards MU15 of GB5101-2003, up to 21.79Mpa with 40% iron tailings corresponding to its higher bulk density completely. Moreover, the results showed that it has such advantages as no lime blowing, uniform color, good freeze/thaw resistance and slight universal frost.


2014 ◽  
Vol 1081 ◽  
pp. 313-317
Author(s):  
Yan Wen Lu ◽  
Yu Ge ◽  
Yue Feng Tang

A one-step carbon thermal method was used to prepare LiFePO4/C particles by using normal Fe2O3, LiH2PO4and sucrose as raw materials. The effect of H2content in the sintering atmosphere of N2on the morphology and the electrochemical performance were investigated. LiFePO4/C materials were characterized by X-ray diffraction, scanning electron microscopy and the elemental analyzer. The results show that the precursor sintering under the atmosphere of 8%H2+N2exhibits the highest electrochemical capacity (162.3 mAh/g at 0.1C) .


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 365 ◽  
Author(s):  
N. Ma. Rosas-Laverde ◽  
A. Pruna ◽  
D. Busquets-Mataix ◽  
D. Pullini

In this paper, ZnO electrodeposition was studied with the presence of graphene oxide (GO) exploited as a possible structure-directing agent. The effect of deposition potential and duration on the morphology and structure of ZnO was analyzed. The morphology and structure of the hybrids was analyzed by Raman spectroscopy, X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM). The Raman results indicate a successful modification of ZnO with GO sheets and a hybridization threshold of 10 mg L−1 by the evolution of the defect related band of ZnO at 580 cm−1. The morphology results show that a low GO content only slightly influences the morphology and orientation of ZnO nanostructures while a high content as 10 mg L−1 changes the morphology in nanoplates and growth orientation to lateral. The results show that while GO participated in the deposition reaction, it has a two-fold role, also by structure-controlling ZnO, indicating that the approach is valid for the use of GO as a structure-directing agent for the fabrication of ZnO nanostructures by electrodeposition with varying morphologies and orientations.


2021 ◽  
pp. 1-22
Author(s):  
Alicia Fernández Díaz ◽  
Ana María Bejarano Osorio ◽  
Macarena Bustamante-Álvarez ◽  
Dolores Julia Yusá Marco ◽  
Sofía Vicente Palomino ◽  
...  

Abstract During the excavations carried out since 2017 in the House of the Mithraeum (Casa del Mitreo) in Mérida a collection of paintings was recovered from Room 11, which had been abandoned in the late 3rd c. CE after a fire. The remains included fragments of molded stucco cornices, with braided esparto grass ropes on the reverse that were used to attach them to the ceiling. This article presents the descriptive and technical study of the finds and their compositional analysis using scanning electron microscopy and X-ray diffraction. Data resulting from these analyses allow us to understand the fragments’ composition and technical execution, and even the possible circulation of workshops and raw materials.


2011 ◽  
Vol 10 (06) ◽  
pp. 1209-1214 ◽  
Author(s):  
HUIZHAO ZHUANG ◽  
JIE WANG ◽  
XIAOKAI ZHANG ◽  
JUNLIN LI

Gallium nitride ( GaN ): nanostructured materials are synthesized by ammoniating Ga2O3/Nb films which are deposited in turn on Si(111) substrates at 900°C. The morphology and structure of the nanostructured materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Optical property of GaN nanostructured materials are analyzed by photoluminescence (PL). The results demonstrated that as-synthesized nanostructured materials are hexagonal wurtzite-structured. Ammoniating time of the samples has an evident influence on the morphology of GaN nanostructured materials synthesized by this method. The PL spectra indicate good emission property for the nanostructured materials. Finally, the growth mechanism is also briefly discussed.


2011 ◽  
Vol 284-286 ◽  
pp. 746-749
Author(s):  
Chong Hai Deng ◽  
Han Mei Hu ◽  
Ming Di Yang

In this paper, we reported a facile microwave-assisted green chemical route to prepare pure, uniform, and monodispersed Cu2O octahedron wrapped by the {111} faces by using glucose as a reducing agent. X-ray diffraction (XRD), energy dispersive X-ray spectrometry(EDX) and field emission scanning electron microscopy (FESEM) were used to characterize the as-synthesized products. It was found that the morphology and structure of Cu2O crystals were greatly affected by the concentration of NaOH. A solid-solution-solid growth mechanism was possibly proposed on the basis of the comparative experimental results.


2012 ◽  
Vol 430-432 ◽  
pp. 521-524
Author(s):  
Feng Feng Li ◽  
Jiao Du ◽  
Ming Xi Zhang ◽  
Wei Chao Yang ◽  
Yi Shen

Cordierite–mullite composite crucibles were prepared via high-temperature solid-state process by using burn talc, datong soil, knar clay, bentonite, quartz, feldspar and alumina as raw materials, waste porcelain powder as skeletal material. The main influencing factors such as the raw materials radio and calcination temperature were discussed. The microstructure of the sintered sample was analyzed with X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The results show that the optimal prescription was sample II (13.34 wt% of burn talc, 10.496wt% datong soil, 40.65% knar clay, 15.00wt% waste porcelain powder,10.34wt% bentonite, 2.17wt% feldspar, 1.61wt% quartz, and 6.394wt% of alumina). The optimal sintered temperature was 1380°C and the holding time was 3 hours.


Sign in / Sign up

Export Citation Format

Share Document