Effect of Ultrasound Action Modes on the Oxidation Resistance of Ni-Nd2O3 Nanocomposite Coatings

2011 ◽  
Vol 120 ◽  
pp. 280-283 ◽  
Author(s):  
Xian Hui Li ◽  
Yu Jun Xue ◽  
De Ying Zhang ◽  
Ji Shun Li

The Ni-Nd2O3nanocomposite coatings were prepared by electrodeposition with different modes of ultrasound action. The surface morphology and co-deposited Nd2O3content of Ni-Nd2O3nanocomposite coatings were analyzed by scanning electron microscopy (SEM). The microstructure of Ni-Nd2O3nanocomposite coatings after oxidation was examined. The oxidation resistance of the coatings prepared by different electrodeposition methods was comparatively investigated. The results show that the content of Nd2O3nanoparticles greatly influences the oxidation resistance of nanocomposite coatings. The nanocomposite coating has an excellent oxidation resistance with the increased content of Nd2O3nanoparticles. Meanwhile, Nd2O3nanoparticles and ultrasound can significantly affect the microstructure and the oxidation resistance of Ni-Nd2O3nanocomposite coatings. The Ni-Nd2O3coating prepared by electrodeposition with dual-frequency ultrasound action has finer grains and denser structure and exhibits a superior oxidation resistance compared with the other coatings.

2012 ◽  
Vol 591-593 ◽  
pp. 1001-1005 ◽  
Author(s):  
Zheng Hong Ao ◽  
Yu Jun Xue ◽  
Xian Hui Li ◽  
Ji Shun Li

The Ni-Nd2O3 nanocomposite coatings were prepared by electrodeposition under dual-frequency ultrasound(DU). The Nd2O3 content and surface morphology of Ni-Nd2O3 nanocomposite coatings were analyzed by scanning electron microscopy (SEM). The results showed that the Nd2O3 content of the nanocomposite coating prepared by electrodeposition using DU was high at 3.48% and the surface morphologies of DU nanocomposite coating showed better smooth surface, finer grain and more compact microstructure. A kind of method to prepare high quality Ni-Nd2O3 nanocomposite coating was obtained, which was: 40 g/L Nd2O3 nanoparticles, 45°C the temperature of electrolyte, 4A/dm2 cathode current density, 240W the power of bath-type ultrasound(BU), 100kHz the frequency of BU, 30W the power of probe-type ultrasound(PU), 20kHz the frequency of PU, and 1000r/min the stirring speed.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


1989 ◽  
Vol 35 (12) ◽  
pp. 1081-1086 ◽  
Author(s):  
Byron F. Johnson ◽  
L. C. Sowden ◽  
Teena Walker ◽  
Bong Y. Yoo ◽  
Gode B. Calleja

The surfaces of flocculent and nonflocculent yeast cells have been examined by electron microscopy. Nonextractive preparative procedures for scanning electron microscopy allow comparison in which sharp or softened images of surface details (scars, etc.) are the criteria for relative abundance of flocculum material. Asexually flocculent budding-yeast cells cannot be distinguished from nonflocculent budding-yeast cells in scanning electron micrographs because the scar details of both are well resolved, being hard and sharp. On the other hand, flocculent fission-yeast cells are readily distinguished from nonflocculent cells because fission scars are mostly soft or obscured on flocculent cells, but sharp on nonflocculent cells. Sexually and asexually flocculent fission-yeast cells cannot be distinguished from one another as both are heavily clad in "mucilaginous" or "hairy" coverings. Examination of lightly extracted and heavily extracted flocculent fission-yeast cells by transmission electron microscopy provides micrographs consistent with the scanning electron micrographs.Key words: flocculation, budding yeast, fission yeast, scanning, transmission.


2017 ◽  
Vol 62 (2) ◽  
pp. 1005-1010 ◽  
Author(s):  
Peyala Dharmaiah ◽  
C.H. Lee ◽  
B. Madavali ◽  
Soon-Jik Hong

AbstractIn the present work, we have prepared Bi2Te3nanostructures with different morphologies such as nano-spherical, nanoplates and nanoflakes obtained using various surfactant additions (EG, PVP, and EDTA) by a hydrothermal method. The shape of the nanoparticles can be controlled by addition of surfactants. The samples were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that the minority BiOCl phase disappears after maintained pH at 10 with EG as surfactant. SEM bulk microstructure reveals that the sample consists of fine and coarse grains. Temperature dependence of thermoelectric properties of the nanostructured bulk sample was investigated in the range of 300-450K. The presence of nanograins in the bulk sample exhibits a reduction of thermal conductivity and less effect on electrical conductivity. As a result, a figure of merit of the sintered bulk sample reached 0.2 at 400 K. A maximum micro Vickers hardness of 102 Hv was obtained for the nanostructured sample, which was higher than the other reported results.


1994 ◽  
Vol 6 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Marek R. Lipinski ◽  
M. Deon Durholtz

It appears that squid statoliths cannot yet be regarded as accurate an ageing tool as fish otoliths. Statoliths from the same pair, prepared differently for viewing and counting increments, were compared. Increment counts do not imply age in days, because this was not validated. One statolith from each pair was examined by light microscopy (LM) after preparation following a new method. The other was viewed by Scanning Electron microscopy (SEM) with a modified etching solution. Shape of each statolith was similar when compared by multiple regression analysis (11 variables, n=53). There was a weak but significant difference between sexes (statoliths of females were slightly larger). All other differences were insignificant. Microscopic observation and increment counts of increments were successfully carried out for 37 pairs of statoliths. Significant differences between two independent counts were found for the LM method, but no significant differences were found between two independent SEM counts. Counts were significantly different when interpreted by both LM and SEM, probably because of poor resolution in the LM readings and over-resolution (growth layers prominent and numerous) in those read by SEM. Recommendations are made on how ageing studies, based on statoliths, should be structured and the results evaluated.


Phytotaxa ◽  
2015 ◽  
Vol 207 (1) ◽  
pp. 135 ◽  
Author(s):  
Giovanni Raul Bogota ◽  
Carina Hoorn ◽  
Wim Star ◽  
Rob Langelaan ◽  
Hannah Banks ◽  
...  

Sabinaria magnifica is so far the only known species in the recently discovered tropical palm genus Sabinaria (Arecaceae). Here we present a complete description of the pollen morphology of this palm species based on light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We also made SEM-based comparisons of Sabinaria with other genera within the tribe Cryosophileae. Pollen grains of Sabinaria magnifica resemble the other genera in the heteropolar, slightly asymmetric monads, and the monosulcate and tectate exine with perforate surface. Nevertheless, there are some clear differences with Thrinax, Chelyocarpus and Cryosophila in terms of aperture and exine. S. magnifica differs from its closest relative, Itaya amicorum, in the exine structure. This study shows that a combination of microscope techniques is essential for the identification of different genera within the Cryosophileae and may also be a necessary when working with other palynologically less distinct palm genera. 


1999 ◽  
Vol 585 ◽  
Author(s):  
Markus Bauer ◽  
Ralf Metzger ◽  
Robert Semerad ◽  
Paul Berberich ◽  
Helmut Kinder

AbstractBiaxially textured MgO buffer layers were deposited on metal substrates using “inclined substrate deposition” (ISD). The influence of the substrate inclination angle, deposition rate, and film thickness on the texture is shown. Scanning electron microscopy reveals columnar growth. We developed a growth model to explain the texturing. To test this model we have carried out 3D Monte-Carlo simulations. We find that the preferred orientation arises from mutual shadowing of the columns and directional surface diffusion due to their initial momentum.YBa2Cu3O7 (YBCO) films deposited on the ISD buffer layers are highly textured. The ab-planes of the YBCO are tilted with respect to the surface by typically 25° towards the direction of MgO vapor incidence. Therefore, the critical current density jc is anisotropic with up to 8 × 105 MA/cm2 in one direction and 4 × 105 MA/cm2 in the other. For tape coating the MgO deposition direction can be chosen so that the high jc is along the tape.


2009 ◽  
Vol 1156 ◽  
Author(s):  
Quoc Toan Le ◽  
Els Kesters ◽  
L Prager ◽  
Marcel Lux ◽  
P Marsik ◽  
...  

AbstractThis study focused on the effect of UV irradiation on modification of polymethyl methacrylate-based photoresist, and then on wet photoresist (PR) removal of patterned structure (single damascene structure). Three single-wavelength UV sources were considered for PR treatment, with λ = 172, 222, and 283 nm. Modification of blanket PR was characterized using Fourier-transform infrared spectroscopy (FTIR; chemical change), spectroscopic ellipsometry (SE; thickness change), and dissolution in organic solvent (solubility change). While for patterned samples, scanning electron microscopy (SEM) was used for evaluation of cleaning efficiency. In comparison to 172 nm, the PR film irradiated by 222 nm and 283 nm photons resulted in formation of higher concentration in C=C bond. Immersion tests using pure N-methyl pyrrolidone (NMP) at 60 °C for 2 min showed that some improvement in PR removal was only observed for PR films treated by 283 nm UV for short irradiation times. Irradiation by photons at the other two wavelengths did not result in an enhancement of removal efficiency.The PR film treated by 222 nm photons was chosen for further study with O3/H2O vapor at 90°C. Experimental results showed a complete PR and BARC removal for UV-treated PR, which can be explained by C=C bond cleavage by the oxidizer.


Biologia ◽  
2009 ◽  
Vol 64 (6) ◽  
Author(s):  
Paulína Gálfiová ◽  
Ivan Varga ◽  
Martin Kopáni ◽  
Peter Michalka ◽  
Jana Michalková ◽  
...  

AbstractThe representation of microcirculation can be approached in several ways. One of the possibilities is to represent the endothelium (endothelial or sinus lining cells) and their basement membrane on the basis of detecting the known components and the expression of the surface antigenes by the methods of immuno-, enzyme- or lectino-histochemical analysis, or by staining or impregnation histological methods. The other possibility is the examination of samples by transmission and scanning electron microscopy. For three-dimensional demonstration corrosion casts techniques or laser scanning confocal microscopy can be used. In this paper we describe the survey of immuno-, enzyme- and lectino-histochemical characteristics of selected components of microcirculation and our own results of its demonstration in human spleen.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Lucas Pereira Borges ◽  
Julio Cesar Campos Ferreira-Filho ◽  
Julia Medeiros Martins ◽  
Caroline Vieira Alves ◽  
Bianca Marques Santiago ◽  
...  

The purpose of this work was to verifyin vitroadherence ofE. corrodensandS. oralisto the surface of tongue piercings made of surgical steel, titanium, Bioplast, and Teflon. For this, 160 piercings were used for the count of Colony Forming Units (CFU) and 32 piercings for analysis under scanning electron microscopy. Of these, 96 (24 of each type) were individually incubated in 5 mL of BHI broth and 50 μL of inoculum at 37°C/24 h. The other 96 piercings formed the control group and were individually incubated in 5 mL of BHI broth at 37°C/24 h. Plates were incubated at 37°C/48 h for counting of CFU/mL and data were submitted to statistical analysis (pvalue<0.05). ForE. corrodens, difference among types of material was observed (p<0.001) and titanium and surgical steel showed lower bacterial adherence. The adherence ofS. oralisdiffered among piercings, showing lower colonization (p<0.007) in titanium and surgical steel piercings. The four types of piercings were susceptible to colonization byE. corrodensandS. oralis, and bacterial adhesion was more significant in those made of Bioplast and Teflon. The piercings presented bacterial colonies on their surface, being higher in plastic piercings probably due to their uneven and rough surface.


Sign in / Sign up

Export Citation Format

Share Document