Development of a Portable ZigBee-Based Nuclear Radiation Monitoring and Detection System

2011 ◽  
Vol 130-134 ◽  
pp. 2639-2642 ◽  
Author(s):  
Fei Ding ◽  
En Tong ◽  
Ai Guo Song ◽  
Jian Qing Li ◽  
Guang Ming Song

This paper presents the development of a novel nuclear radiation monitoring and detection system. With the lightweight and global positioning features, the implemented wireless nuclear detection node can easily be deployed to discover unusual or abnormal radioactivity and map the events. ZigBee-based multi-hop mesh communication is adopted between nuclear detection nodes. All wireless nuclear detection nodes are designed with two working modes, continuous operation and timing operation. The two modes can be switched at any specified time to save energy consumption. Meanwhile, the features of anti-jamming against 802.11 network of ZigBee technology are tested and evaluated.

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1800
Author(s):  
Linfei Hou ◽  
Fengyu Zhou ◽  
Kiwan Kim ◽  
Liang Zhang

The four-wheeled Mecanum robot is widely used in various industries due to its maneuverability and strong load capacity, which is suitable for performing precise transportation tasks in a narrow environment. While the Mecanum wheel robot has mobility, it also consumes more energy than ordinary robots. The power consumed by the Mecanum wheel mobile robot varies enormously depending on their operating regimes and environments. Therefore, only knowing the working environment of the robot and the accurate power consumption model can we accurately predict the power consumption of the robot. In order to increase the applicable scenarios of energy consumption modeling for Mecanum wheel robots and improve the accuracy of energy consumption modeling, this paper focuses on various factors that affect the energy consumption of the Mecanum wheel robot, such as motor temperature, terrain, the center of gravity position, etc. The model is derived from the kinematic and kinetic model combined with electrical engineering and energy flow principles. The model has been simulated in MATLAB and experimentally validated with the four-wheeled Mecanum robot platform in our lab. Experimental results show that the accuracy of the model reached 95%. The results of energy consumption modeling can help robots save energy by helping them to perform rational path planning and task planning.


2013 ◽  
Vol 316-317 ◽  
pp. 176-180 ◽  
Author(s):  
Xue Jing Zheng ◽  
Meng Jun Yang ◽  
Wan Dong Zheng ◽  
Yun Kun Bu

Sino-Singapore Tianjin Eco-city is a strategic cooperation project between China and Singapore to improve the living environment and build an eco-culture. Animation-park covers an area of 1 km2, with a total construction area of 7.7x105m2. Wide sources of the renewable energy, such as solar hot water system, ground source heat pump system, solar PV power generation system, and deep geothermal energy system, is strongly recommended to use in eco-city in order to save energy and protect the environment. The usage of renewable energy is seen as a complement to the conventional energy. The energy consumption of the animation park is 42926tce of coal per year, and the renewable energy that used is 4573.6tce of coal per year. The usage of renewable energy leads to the reduction in the emission of CO2 of 18895.9t per year.


2012 ◽  
Vol 20 (1) ◽  
pp. 35-40
Author(s):  
S. Štefunková

Characteristics of asphalt mixes with FT additiveThis article is focused on low-temperature asphalt mixture technologies using FT additive and RAP. The modern production and use of asphalt mixture technologies with reduced temperatures has many advantages. These advantages mainly help to save energy and the environment. Lower temperatures enable a reduction in energy consumption, a more acceptable working environment for workers, a reduction in negative environmental effects, such as greenhouse gas emissions, and an improvement in the workability of mixtures and a prolongation of their duration. This technology is currently becoming popular in many countries.


2021 ◽  
Vol 263 ◽  
pp. 04025
Author(s):  
Dmitrii Khlopitsyn ◽  
Andrey Rymarov

Energy consumption all over the world is constantly growing. To save energy, new technologies are being developed for the efficient use of energy resources. The goal of all new developments is to use less energy to provide the same level of energy supply for technological processes or buildings. The problem of energy saving is relevant for the ventilation system. Together with the removed air, a large amount of heat is lost, which is not advisable. In order to avoid these losses, heat recuperators began to be used, heating the cold supply air due to the warm air removed from the room. This development belongs to the field of energy saving. The goal is to increase efficiency by reheating the air after the heater with the help of a recuperator for a given temperature difference in the supply air before and after the recuperative heat exchanger. The development is a design of a ventilation unit with air removal and supply air ducts, combined into one housing with a separate, according to the “screw” principle, heat transfer wall, for use in the ventilation system in order to ensure an optimal microclimate in the room. Thus, as a result of using the presented device, the efficiency of the room ventilation unit is increased by reducing the energy consumption for heating the supply air with a heater.


2020 ◽  
Vol 328 ◽  
pp. 01014
Author(s):  
Kamil Križo ◽  
Andrej Kapjor ◽  
Martin Vantúch

Fresh air has to be constantly supplied to the building by air handling unit, where supplied air is mixed with inside air and optimal temperature, oxygen level is adjusted and level of dust and smoke is reduced. Supply air demand of the building is determined according to number of persons in the room, room area and regulations. Necessity of ventilation rely in supplying room with oxygen, cleaning the air, adjusting temperature and moisture and reduction of odours, gases, dust, bacteria and viruses. Achieving optimal properties of supply air creates huge portion of building energy consumption. To save energy during ventilation, standard air to air sensible heat exchangers are used. They purpose is to recover sensible heat from exhaust air and at the same time avoid contamination of supply air. Drawback of these types of exchangers is limit of recovering moisture, therefore huge portion of energy in form of latent heat is lost. On top of classical plate air to air heat exchanger, enthalpy heat exchanger allows to exchange latent as well as sensible heat [1].


2014 ◽  
Vol 953-954 ◽  
pp. 890-895
Author(s):  
Hui Min Li ◽  
Cun Bin Li ◽  
Zhan Xin Ma

In recent years, with the rapid economic growth, the demand on the amount of energy in China is increasing. So the problem of how to improve the energy utilization efficiency and save energy consumption has to be tackled. The traditional CCR model and BCC model used in the study of provincial energy efficiency do not take the impact of technological progress into consideration. Therefore, the paper uses the generalized DEA method to research the energy utilization efficiency of China’s 29 provinces, that is, to evaluate and analyze the energy utilization efficiency by selecting the capital stock, employment and total energy consumption of China’s provinces as input factors and GDP, per capital GDP as output factors, and then draw tables showing each province’s change of average annual overall efficiency and the pure technology changes, and finally analyze the regularities underlying these changes.


Author(s):  
Vasily G. Moshnyaga

With the explosive use of personal computers or PCs, reducing computer energy consumption is paramount for sustainability. The display is the largest energy consumer in a personal computer. Current display energy management technologies ignore the attention of the PC user and therefore may either switch the display off when the user looks at the screen or lose energy by keeping the display on when nobody looks at it. This chapter discusses a new display energy management technology and outlines its implementation in a personal computer system. Unlike existing technologies, which “sense” a PC user through keyboard and/or mouse or the other sensors, this technology “watches” the user through a single camera or CMOS vision sensor. The technology tracks the user’s eyes, keeping display active only if the user looks at its screen. Otherwise, it dims the display down or even switches it off to save energy. The authors implemented the technology in software and hardware and present the results of their experimental evaluation.


Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 77 ◽  
Author(s):  
Wentao Liu ◽  
Tao Tang ◽  
Shuai Su ◽  
Jiateng Yin ◽  
Yuan Cao ◽  
...  

Implementation of energy-efficient train driving strategy is an effective method to save train traction energy consumption, which has attracted much attention from both researchers and practitioners in recent years. Reducing the unnecessary braking during the journey and increasing the coasting distance are efficient to save energy in urban rail transit systems. In the steep downhill segment, the train speed will continue to increase without applying traction due to the ramp force. A high initial speed before stepping into the steep downhill segment will bring partial braking to prevent trains from overspeeding. Optimization of the driving strategy of urban rail trains can avoid the partial braking such that the potential energy is efficiently used and the traction energy is reduced. This paper presents an energy-efficient driving strategy optimization model for the segment with the steep downhill slopes. A numerical method is proposed to calculate the corresponding energy-efficient driving strategy of trains. Specifically, the steep downhill segment in the line is identified firstly for a given line and the solution space with different scenarios is analyzed. With the given cruising speed, a primary driving strategy is obtained, based on which the local driving strategy in the steep slope segment is optimized by replacing the cruising regime with coasting regime. Then, the adaptive gradient descent method is adopted to solve the optimal cruising speed corresponding to the minimum traction energy consumption of the train. Some case studies were conducted and the effectiveness of the algorithm was verified by comparing the energy-saving performance with the classical energy-efficient driving strategy of “Maximum traction–Cruising–Coasting–Maximum braking”.


2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Mohammad Islam ◽  
Douglas Janssen ◽  
Carlos Romero-Talamas ◽  
Dan Kostov ◽  
Wanpeng Wang ◽  
...  

Plants exhibit complex responses to change in environmental conditions such as radiant heat flux, water quality, airborne pollutants, and soil contents. We seek to utilize natural chemical and electrophysiological response of plants to develop novel plant-based sensor networks. Our present work focuses on plant responses to nuclear radiation—with the goal of monitoring plant responses as benchmarks for detection and dosimetry. In our study, we used plants including Cactus, Arabidopsis, Dwarf mango (pine), Euymus, and Azela. We demonstrated that these plants Chlorophyll-a (F680) to Chlorophyll-b (F735) ratio can be changed according to the radiation dose amount. The recovery processes and speed are different for different plants.


Author(s):  
N. Fumo ◽  
V. Bortone ◽  
J. C. Zambrano

Data centers are facilities that primarily contain electronic equipment used for data processing, data storage, and communications networking. Regardless of their use and configuration, most data centers are more energy intensive than other buildings. The continuous operation of Information Technology equipment and power delivery systems generates a significant amount of heat that must be removed from the data center for the electronic equipment to operate properly. Since data centers spend up to half their energy on cooling, cooling systems becomes a key factor for energy consumption reduction strategies and alternatives in data centers. This paper presents a theoretical analysis of an absorption chiller driven by solar thermal energy as cooling plant alternative for data centers. Source primary energy consumption is used to compare the performance of different solar cooling plants with a standard cooling plant. The solar cooling plants correspond to different combinations of solar collector arrays and thermal storage tank, with a boiler as source of energy to ensure continuous operation of the absorption chiller. The standard cooling plant uses an electric chiller. Results suggest that the solar cooling plant with flat-plate solar collectors is a better option over the solar cooling plant with evacuated-tube solar collectors. However, although solar cooling plants can decrease the primary energy consumption when compared with the standard cooling plant, the net present value of the cost to install and operate the solar cooling plants are higher than the one for the standard cooling plant.


Sign in / Sign up

Export Citation Format

Share Document