Experimental Research on Ceramsite Concrete Beams

2012 ◽  
Vol 166-169 ◽  
pp. 708-711
Author(s):  
Chuang Du ◽  
Wen Ling Tian ◽  
Xiao Wei Wang ◽  
De Jun Wang

Six specimens, including 4 ceramsite concrete beams(one of beams mixed into the polypropylene fiber ) and 2 normal concrete beams, were tested to investigate the flexural behavior. The test results show that cracking load of ceramsite concrete beams is slightly smaller than the ordinary concrete beam and cracking load of ceramsite concrete beams has significantly improved after mixing into the polypropylene fibers. The ultimate load of ceramsite concrete beams are no less than ordinary concrete beam,and fibers have not effects on the increase of ultimate load. Load-deflection curves were compared,and the results show that stiffness of ceramsite concrete beam is less than ordinary concrete beam. Ductility of ceramsite concrete beam is poorer than ordinary concrete beam. Fibers improve the stiffness of ceramsite concrete beam. Cover thickness of concrete beam has little effect on the performance of ceramsite concrete beam.

2018 ◽  
Vol 7 (4.20) ◽  
pp. 316 ◽  
Author(s):  
Adel A. Al-Azzawi ◽  
Dalia Shakir ◽  
Noora Saad

In Iraq, the use of rubber waste material in concrete is an interesting topic due to its availability in large volumes. Researches of applications of rubber waste in concrete have been increased since 2003. Many studies carried out to investigate the performance of concrete using different ratios of rubber as a replacement to fine or coarse aggregate. In this research, rubber wastes from scrapped tires have been added as fiber to concrete mix with presence of 0.5% superplasticizer. The flexural behavior of concrete beams, mechanical properties of concrete and workability of concrete mixes have been studied. Rubber fibers ranging from (2-4) mm were added in percentages of 0.5% and 1%) of the cement weight. The results have demonstrated that the addition of rubber material as fibers in natural aggregate concrete enhances its ductility, compressive strength and tensile strength compared to the normal concrete. The effect of rubber fiber content is found to be significant on the behavior of tested beams. If the fiber content increased from 0 to 0.5% the cracking load increased by 60 % and ultimate load increased by 21%. For rubberized concrete, if the fiber content increased from 0.5 to 1.0%, the cracking load decreased 7% and ultimate load increased by 4%.   


2011 ◽  
Vol 250-253 ◽  
pp. 379-382
Author(s):  
Jing Li ◽  
Lin Fu Wang ◽  
Juan Li ◽  
Xian Feng Qu ◽  
Lin Jang

In order to study the flexural behavior of coarse recycled aggregate-filled plain concrete beams, two beams were made. The experiment of simply supported beam under concentrated loads is performed, which makes us get the ultimate flexural capacity, midspan deflection and the development of cracks of each beam, and the numerical simulation of the damage process of beams is also carried out using finite element software. The results indicated that the tension property of coarse recycled aggregate-filled plain concrete beam is better than ordinary concrete beam, and some failure forms of bending is similar; the strength of recycled aggregates greatly influences flexural behavior of coarse recycled aggregate-filled plain concrete beam.


The flexural behavior of concrete beams reinforced with bamboo was studied experimentally. Bamboo was used as the main reinforcement with different bonding materials in place of steel. A nominal mix of M20 grade concrete was adopted for the beam design. The Bamboo surface was treated with common binding materials like Araldite and Bitumen. Araldite and Bitumen are good binding materials used to connect materials like steel, carbon and many different materials. Two specimens were casted with bitumen coating, two specimens were coated with araldite, two specimens were casted without any binder coating and a specimen was casted using normal steel reinforcement. Beams were casted with bamboo reinforcement and cured for 28 days. Deflection and flexural behavior of the beams were monitored. The test results imply that araldite coating in concrete beams with bamboo reinforcement increased the flexural strength to that of bamboo reinforced concrete using bitumen which is lesser strength to that of steel reinforced concrete beam.


2020 ◽  
Vol 984 ◽  
pp. 230-238
Author(s):  
Yun Yan Liu ◽  
Ying Fang Fan

In order to explore the flexural behavior of CFRP reinforced pre-stressed concrete (PC) beams with initial cracks, 6 pre-tensioned beams were manufactured. Then the beams were pre-loaded to crack with 40% and 60% ultimate load respectively, and the beams were strengthened by CFRP under the conditions of load holding and fully unloaded. After that, the four-points bending tests were performed, and beam section strains, flexural capacities and cracks were analyzed. The results demonstrate that the ultimate load of CFRP reinforced beams increased by 10%~18%, and the ultimate loads of CFRP reinforced load holding beams were 3% and 6% lower than that of CFRP reinforced non-destructive beam, and the inhibiting effect of CFRP on cracks was weakened, the hysteresis strains should be considered for them. In this paper, the fiber hysteresis strains were calculated by the method of full section decompression moment, and the flexural capacities of CFRP reinforced PC beams were calculated, which are in good agreement with the test results.


2012 ◽  
Vol 256-259 ◽  
pp. 938-941
Author(s):  
Kasinathan Rajkumar ◽  
A.M. Vasumathi

In this paper, an attempt to overcome the problem of brittleness of concrete, by adding polypropylene fibers to the concrete is made. The performance of the polypropylene fiber reinforced concrete will be investigated experimentall under two point middle third of monotonic load for various types of polypropylene fibers and FRP Wrapping.


2021 ◽  
Vol 9 (ICRIE) ◽  
Author(s):  
Ali I. Salahaldin ◽  
◽  
Muyasser M. Jomaa’h ◽  
Dlovan M. Naser ◽  
◽  
...  

One of the most common methods of strengthening, rehabilitation, or repairing of structural lightweight concrete (LWC) elements is the external carbon fiber reinforced polymer (CFRP) strips. This paper presents an experimental study on the flexural behavior of reinforced concrete beams which comprise lightweight aggregate concrete, in different proportions, strengthened by CFRP sheets. The experimental program included six specimens with a 1500mm effective span. Two of the specimens were normal concrete beams. Another two samples were lightweight beams with a 50% aggregate replacement with pumice. The last two specimens were lightweight concrete beams with a 75% aggregate replacement with pumice. These beams were casted and tested twice under a two-point load application, once before strengthening and the other after that. The experimental results show that full strengthening of the beams along with their entire length, increase in load-carrying capacity by 75%, 113%, and 107% for normal concrete beam, (50% aggregate replacement) LWC beam, and (75% aggregate replacement) LWC beam respectively. While the middle-third strengthening of the beams shows an increase in load-carrying capacity by 64%, 72%, and 57% for normal concrete beam, (50% aggregate replacement) LWC aggregate beam, and (75% aggregate replacement) LWC beam respectively. The strength of the two types of LWC beams was almost the same and it is about 85% of the concrete beam with normal weight.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2476
Author(s):  
Haiwen Li ◽  
Sathwik S. Kasyap ◽  
Kostas Senetakis

The use of polypropylene fibers as a geosynthetic in infrastructures is a promising ground treatment method with applications in the enhancement of the bearing capacity of foundations, slope rehabilitation, strengthening of backfills, as well as the improvement of the seismic behavior of geo-systems. Despite the large number of studies published in the literature investigating the properties of fiber-reinforced soils, less attention has been given in the evaluation of the dynamic properties of these composites, especially in examining damping characteristics and the influence of fiber inclusion and content. In the present study, the effect of polypropylene fiber inclusion on the small-strain damping ratio of sands with different gradations and various particle shapes was investigated through resonant column (macroscopic) experiments. The macroscopic test results suggested that the damping ratio of the mixtures tended to increase with increasing fiber content. Accordingly, a new expression was proposed which considers the influence of fiber content in the estimation of the small-strain damping of polypropylene fiber-sand mixtures and it can be complementary of damping modeling from small-to-medium strains based on previously developed expressions in the regime of medium strains. Additional insights were attempted to be obtained on the energy dissipation and contribution of fibers of these composite materials by performing grain-scale tests which further supported the macroscopic experimental test results. It was also attempted to interpret, based on the grain-scale tests results, the influence of fiber inclusion in a wide spectrum of properties for fiber-reinforced sands providing some general inferences on the contribution of polypropylene fibers on the constitutive behavior of granular materials.


2018 ◽  
Vol 7 (1) ◽  
pp. 126
Author(s):  
Latha M S ◽  
Revanasiddappa M ◽  
Naveen Kumar B M

An experimental investigation was carried out to study shear carrying capacity and ultimate flexural moment of reinforced cement concrete beam. Two series of simply supported beams were prepared by varying diameter and spacing of shear and flexural reinforcement. Beams of cross section 230 mm X 300 mm and length of 2000 mm. During testing, maximum load, first crack load, deflection of beams were recorded. Test results indicated that decreasing shear spacing and decreasing its diameter resulted in decrease in deflection of beam and increase in bending moment and shear force of beam.


2010 ◽  
Vol 163-167 ◽  
pp. 3634-3639
Author(s):  
Li Li Sui ◽  
Tie Jun Liu ◽  
Feng Xing ◽  
Yu Xiang Fu

This paper illustrates the results of an experimental study on the bending performance of concrete beams strengthened with near-surface mounted (NSM) FRP reinforcement. The critical parameter of the embedded length of NSM-FRP plates was investigated in particularly. The test results indicated that NSM-FRP reinforcement can significantly improve the strength and crack resistance capacity of the concrete beam, reducing the size of cracks. The embedded length of the NSM-FRP plate has distinct influence on the cracking and bending capacity, the flexural stiffness, and the crack developments of the concrete beam. As the embedded length increased, the bending capacity and the flexural stiffness increased correspondingly and the crack developed more intensively.


2016 ◽  
Vol 707 ◽  
pp. 51-59 ◽  
Author(s):  
Osama Ahmed Mohamed ◽  
Rania Khattab

The behaviour of reinforced concrete beam strengthened with Carbon Fiber Reinforced Polymer (CFRP) and Glass fiber reinforced polymer GFRP laminates was investigated using finite element models and the results are presented in this paper. The numerical investigation assessed the effect of the configuration of FRP strengthening laminates on the behaviour of concrete beams. The load-deflection behaviour, and ultimate load of strengthened beam were compared to those of un-strengthened concrete beams. It was shown that using U-shaped FRP sheets increased the ultimate load. The stiffness of the strengthed beam also increased after first yielding of steel reinforcing bars. At was also observed that strengthening beams with FRP laminates to one-fourth of the beam span, modifies the failure of the beam from shear-controlled near the end of the unstrengthened beam, to flexure-controlled near mid-span. CFRP produced better results compared GFRP in terms of the ability to enhance the behavior of strengthenened reinforced concrete beams.


Sign in / Sign up

Export Citation Format

Share Document