THE EFFECT OF VERTICAL AIR GAPS TO THERMAL TRANSMITTANCE OF HORIZONTAL THERMAL INSULATING LAYER

2009 ◽  
Vol 15 (3) ◽  
pp. 309-315 ◽  
Author(s):  
Jolanta Šadauskienė ◽  
Andrius Buska ◽  
Arūnas Burlingis ◽  
Raimondas Bliūdžius ◽  
Albinas Gailius

In order to reduce the amounts of work at the construction site, single‐ply dual density thermal insulating roofing boards are used with increasing frequency for thermal insulation of flat roofs. In this case, the joints between boards are not overlapped by the other ply over it; therefore gaps of varying width form between the sides of the boards through the entire thickness of the insulating layer, whose effect on the effective thermal conductivity of the thermal insulating layer must be evaluated. The aim of this project was to assess the reliability of standard method, used to determine the impact of such air gaps on the effective thermal conductivity of the thermal insulating layer by comparing the results of calculations and the results of measurements of thermal conductivity, also to determine the correction factors for thermal transmittance of horizontal thermal insulation layers due to the forming vertical air gaps between the single‐ply mineral wool boards. After measurements of thermal resistances of 50 mm thick thermal insulation board with the air gaps which width varied from 3 mm to 20 mm, it was determined that the thermal conductivity value of the air gaps increases with the increment of the width of air gaps. After completion the experimental measurements of thermal conductivity it was determined that the height of closed and unventilated or partly ventilated air gaps has no effect on the properties of effective thermal conductivity of the thermal insulation layer when the air gap width is up to 5 mm. When wider unventilated or partly ventilated air gaps occur, the effective thermal conductivity coefficient increases proportionally as the height of the air gaps increases. Calculated according to the standard method the affix to the thermal transmittance is overly general and not always appropriate. In some cases it is 6 times higher or 4 times lower than the measured one. In this paper a method to evaluate the effects of air gaps by the use of correction factor to the thermal transmittance of the horizontal thermal insulating layer is proposed. Santrauka Nornt sumažinti darbų apimtis statybos vietoje, stogams šiltinti vis dažniau naudojamos vienu sluoksniu klojamos dvitankės termoizoliacinės plokštės. Šiuo atveju plokščių sandūros neperdengiamos, todėl tarp plokščių kraštinių susidaro įvairaus pločio plyšių, kurių įtaka termoizoliacinio sluoksnio šilumai perduoti turi būti įvertinta. Šio darbo tikslas yra įvertinti standartinio metodo, taikomo tokių plyšių poveikiui sluoksnio šilumos laidumui, patikimumui nustatyti lyginant skaičiavimo ir šilumos laidumo matavimų rezultatus, nustatyti horizontaliojo termoizoliacinio sluoksnio šilumos perdavimo koeficiento pataisas dėl vertikaliųjų oro plyšių susidarymo. Apskaičiavus 50 mm storio termoizoliacinio sluoksnio oro plyšių šilumines varžas, kai plyšių plotis yra nuo 3–20 mm, nustatyta, kad oro plyšių šilumos laidumo koeficiento vertė didėja didėjant oro plyšio pločiui. Atlikus eksperimentinius šilumos laidumo matavimus, nustatyta, kad susidarančių uždarų ir nevėdinamų arba iš dalies vėdinamų oro plyšių aukštis neturi įtakos termoizoliacinio sluoksnio šilumos laidumo savybėms, kai oro plyšys yra iki 5 mm pločio. Esant platesniems uždariems ir nevėdinamiems oro plyšiams, šilumos laidumo koeficientas proporcingai didėja didėjant oro plyšių aukščiui. Pagal standartinį metodą skaičiuotas šilumos perdavimo koeficiento priedas yra per daug apibendrinantis ir ne visada tinkamas. Kai kuriais atvejais jis yra 6 kartus didesnis arba 4 kartus mažesnis už išmatuotąjį. Šiame darbe pasiūlytas horizontaliojo termoizoliacinio sluoksnio šilumos perdavimo koeficiento priedo, naudojamo plyšių įtakai įvertinti, skaičiavimo metodas.

2020 ◽  
Vol 3 (3) ◽  
pp. 21-27 ◽  
Author(s):  
T. Drozdyuk ◽  
Arkadiy Ayzenshtadt ◽  
M. Frolova ◽  
Rama Shanker Rama Shanker Verma

the paper shows the possibility of producing a thermal insulating composite based on basalt fibers and sapo-nite-containing mining waste. A method for manufacturing thermal insulating composites from hydro-mass with different contents of the mixture components is proposed. Basalt fibers were used as a filler, and pre-mechanoactivated saponite-containing material (SCM) was used as a binder. It was found experimentally that depending on the composition of composites, the coefficient of thermal conductivity varies from 0.1109 to 0.1342 W/(m•K), and the compressive strength – from 0.45 to 0.93 MPa. In addition, it was found that thermal modification of composites at temperatures up to 1200°C significantly (up to 3 times) increases the compressive strength of composites, while not affecting the coefficient of thermal conductivity. The ex-periments to determine the conductivity of the composite “basalt fiber – SСM” depending on its moisture content showed that the obtained composite is characterized by intense and linear increase in the values of conductivity when the humidity of the sample to 12% and further increase in humidity practically does not change the values of the coefficient of thermal conductivity. Comparison of the studied thermal insulation composite with known structural thermal insulation materials in terms of its thermal insulation and strength characteristics showed that it is comparable to gas and foam blocks. It should also be noted that this material is environmentally safe and can withstand high temperatures without collapsing.


2015 ◽  
Vol 666 ◽  
pp. 17-29 ◽  
Author(s):  
Sukhdeo R. Karade

The growing environmental concern throughout the globe has led architects & engineers to design energy efficient buildings. Consequently, they are looking for building materials that can reduce the energy consumption in buildings to maintain the comfort level. Use of proper thermal insulating materials can reduce the energy required for heating or cooling of the buildings. Presently mineral wool and various foams are used for this purpose. Efforts are being made to use wastes in making thermal insulation materials so that the impact on environment can be further reduced. Cork granules are obtained as waste from the cork processing industries that make ‘bottle stoppers’ as a main product. These granules have a low density and could be used as lightweight aggregates for making concrete with low thermal conductivity. This article describes the physico-mechanical properties of lightweight cementitious composites made using cork granules. Further, environmental benefits of their application in thermal insulation of buildings has been discussed.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1838
Author(s):  
Shi-Yi Qiu ◽  
Chen-Wu Wu ◽  
Chen-Guang Huang ◽  
Yue Ma ◽  
Hong-Bo Guo

Microstructure dependence of effective thermal conductivity of the coating was investigated to optimize the thermal insulation of columnar structure electron beam physical vapor deposition (EB-PVD coating), considering constraints by mechanical stress. First, a three-dimensional finite element model of multiple columnar structure was established to involve thermal contact resistance across the interfaces between the adjacent columnar structures. Then, the mathematical formula of each structural parameter was derived to demonstrate the numerical outcome and predict the effective thermal conductivity. After that, the heat conduction characteristics of the columnar structured coating was analyzed to reveal the dependence of the effective thermal conductivity of the thermal barrier coatings (TBCs) on its microstructure characteristics, including the column diameter, the thickness of coating, the ratio of the height of fine column to coarse column and the inclination angle of columns. Finally, the influence of each microstructural parameter on the mechanical stress of the TBCs was studied by a mathematic model, and the optimization of the inclination angle was proposed, considering the thermal insulation and mechanical stress of the coating.


2017 ◽  
Vol 17 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Ali Afzal ◽  
Sheraz Ahmad ◽  
Abher Rasheed ◽  
Faheem Ahmad ◽  
Fatima Iftikhar ◽  
...  

Abstract The aim of this study was to analyse the effects of various fabric parameters on the thermal resistance, thermal conductivity, thermal transmittance, thermal absorptivity and thermal insulation of polyester/cotton double layer knitted interlock fabrics. It was found that by increasing fibre content with higher specific heat increases the thermal insulation while decreases the thermal transmittance and absorptivity of the fabric. It was concluded that double layer knitted fabrics developed with higher specific heat fibres, coarser yarn linear densities, higher knitting loop length and fabric thickness could be adequately used for winter clothing purposes.


2021 ◽  
Vol 887 ◽  
pp. 480-486
Author(s):  
T.N. Vachnina ◽  
I.V. Susoeva ◽  
A.A. Titunin ◽  
S.V. Tsybakin

Many plant wastes are not currently used in production, they are disposed of in landfills or incinerated. The aim of this study is to develop a composite thermal insulation material from unused spinning waste of flax and cotton fibers and soft wood waste. Samples of thermal insulation materials from plant waste were made by drying using the technology of production of soft wood fiber boards. For composite board defined physico-mechanical characteristics and thermal conductivity. The experiment was carried out according to a second-order plan, regression models of the dependences of the material indicators on the proportion of the binder additive, drying temperature and the proportion of wood waste additives were developed. The study showed that composites from unused spinning waste of plant fibers and soft wood waste have the necessary strength under static bending, the swelling in thickness after staying in water is much lower in comparison with the performance of boards from other plant fillers. The coefficient of thermal conductivity of the boards is comparable with the indicator for mineral wool boards.


2013 ◽  
Vol 8 (3) ◽  
pp. 155892501300800 ◽  
Author(s):  
Abolfazl Mirdehghan ◽  
Siamak Saharkhiz ◽  
Hooshang Nosraty

This paper describes an experimental study of the impact of yarn structure on the thermal properties of worsted fabric. In this study, four different spun yarn structures (Solo, Siro, and single ply and two ply Ring) were woven into four fabric structures (Plain, Twill2/1, Twill2/2 and Basket2/2) and their thermal properties were studied. In addition, the thermal behavior of finished and unfinished samples was also evaluated. Results showed that the finishing process causes an increase in thermal conductivity and warmth to weight factor and a decrease in thermal insulation. Different spinning systems, also affect the thermal properties of the worsted fabrics. Samples with Siro yarns in the weft were found to have the highest thermal conductivity and those made from single ply weft yarn the lowest thermal conductivity. A relation between fabric thermal insulation and air permeability and thickness was also found.


2013 ◽  
Vol 639-640 ◽  
pp. 325-328
Author(s):  
Yan Jia Guo ◽  
Zhu Li ◽  
Yuan Zhen Liu ◽  
Shang Song Qin

Based on the compressive strength, the thermal conductivity, the elastic modulus and the steel bond strength of thermal insulation glazed hollow bead concrete, referring to the carbonation mechanism and the influence factors of the ordinary concrete, considering the impact of raw materials and the influence of construction technology, the study on thermal insulation glazed hollow bead concrete anti-carbonation was proposed. From the test results, it can conclude that for the same intensity level, the anti-carbonation capacity of the thermal insulation glazed hollow bead concrete is better than that of the ordinary concrete. For different strength grade of thermal insulation glazed hollow bead concrete, to some extend, the higher the intensity level is, the stronger the ability of thermal insulation glazed hollow bead concrete anti-carbonation is.


Nanoscale ◽  
2020 ◽  
Vol 12 (24) ◽  
pp. 13064-13085 ◽  
Author(s):  
Piyapong Buahom ◽  
Chongda Wang ◽  
Mohammed Alshrah ◽  
Guilong Wang ◽  
Pengjian Gong ◽  
...  

This work aims to predict the thermal conductivity of microcellular and nanocellular thermal insulation foams to explore the correlation between the cellular structure and the thermal insulating properties.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1991 ◽  
Author(s):  
Tomas Makaveckas ◽  
Raimondas Bliūdžius ◽  
Arūnas Burlingis

Polyisocyanurate (PIR) thermal insulation boards faced with carboard, plastic, aluminum, or multilayer facings are used for thermal insulation of buildings. Facing materials are selected according to the conditions of use of PIR products. At the corners of the building where these products are joined, facings can be in the direction of the heat flux movement and significantly increase heat transfer through the linear thermal bridge formed in the connection of PIR boards with facing of both walls. Analyzing the installation of PIR thermal insulation products on the walls of a building, the structural schemes of linear thermal bridges were created, numerical calculations of the heat transfer coefficients of the linear thermal bridges were performed, and the influence of various facings on the heat transfer through the thermal bridge was evaluated. Furthermore, an experimental measurement using a heat flow meter apparatus was performed in order to confirm the results obtained by numerical calculation. This study provides more understanding concerning the necessity to evaluate the impact of different thermal conductivity facings on the heat transfer through corners of buildings insulated with PIR boards.


Sign in / Sign up

Export Citation Format

Share Document