Possibilities of Use of Virtual Reality in the Field of Manufacturing Systems

2012 ◽  
Vol 186 ◽  
pp. 188-193 ◽  
Author(s):  
Lucia Koukolová ◽  
Mikuláš Hajduk ◽  
Andrej Belovezcik

The paper presents the structure and performance of the system created by a work team at Department of Production Systems and Robotics at Technical University of Kosice. System MSEVR – „ Modular system for experimentation in virtual reality“ is universal flexible system created for teaching automated and robotic systems by means of new advanced teaching aids, including virtual reality. It has been created as a specialized website and its possibilities are varied. Particular use depends on creativity of a user. Built-in tools enable to use it adequately when teaching construction of industrial robots, to present their kinematic structure or other properties of individual machines. It also enables to work with machine aggregate. In real-life working the system has been tested for optimization of process layout where the full advantages of virtual reality were taken.

2021 ◽  
Author(s):  
Nils M. Vahle ◽  
Sebastian Unger ◽  
Martin J. Tomasik

Introduction: While virtual reality (VR) is an emerging paradigm in a variety of research contexts, VR-based embodiment effects on behavior and performance still lack in sufficient evidence regarding to bias in cognitive performance assessment. Methods: In this methodological observational study, we compare the VR measurement of cognitive performance with a conventional computer-based testing approach in real life (RL) in younger and older adults. The differences between VR and RL scenarios are investigated using the background of two theoretical models from cognitive psychology. Furthermore, data assessment reliability and validity are analyzed, concerning the feasibility of technological and ergonomic aspects. Results: A within-group comparison showed no change in information processing speed in either one of the two age groups, i.e., both groups perform equally well in RL and in a VR testing environment. Conclusion: The use of lifelike VR environments for cognitive performance tests seems not to lead to any performance changes compared to RL computer-based assessments, making VR suitable for similar applications. On technical concerns, we recommend the careful use of reaction time paradigms regarding to input hardware and stimuli presentation.


2018 ◽  
Vol 32 (1) ◽  
pp. 46-61 ◽  
Author(s):  
Tatiana Ogourtsova ◽  
Philippe Archambault ◽  
Samir Sangani ◽  
Anouk Lamontagne

Background. Unilateral spatial neglect (USN) is a highly prevalent and disabling poststroke impairment. USN is traditionally assessed with paper-and-pencil tests that lack ecological validity, generalization to real-life situations and are easily compensated for in chronic stages. Virtual reality (VR) can, however, counteract these limitations. Objective. We aimed to examine the feasibility of a novel assessment of USN symptoms in a functional shopping activity, the Ecological VR-based Evaluation of Neglect Symptoms (EVENS). Methods. EVENS is immersive and consists of simple and complex 3-dimensional scenes depicting grocery shopping shelves, where joystick-based object detection and navigation tasks are performed while seated. Effects of virtual scene complexity on navigational and detection abilities in patients with (USN+, n = 12) and without (USN−, n = 15) USN following a right hemisphere stroke and in age-matched healthy controls (HC, n = 9) were determined. Results. Longer detection times, larger mediolateral deviations from ideal paths and longer navigation times were found in USN+ versus USN− and HC groups, particularly in the complex scene. EVENS detected lateralized and nonlateralized USN-related deficits, performance alterations that were dependent or independent of USN severity, and performance alterations in 3 USN− subjects versus HC. Conclusion. EVENS’ environmental changing complexity, along with the functional tasks of far space detection and navigation can potentially be clinically relevant and warrant further empirical investigation. Findings are discussed in terms of attentional models, lateralized versus nonlateralized deficits in USN, and tasks-specific mechanisms.


2013 ◽  
Vol 791-793 ◽  
pp. 826-830
Author(s):  
Wei Der Chung ◽  
Woon Ki Na ◽  
Shih Chieh Shie ◽  
Hsin Pei Chen ◽  
Xiao Hu

Current trends in precision machinery include increased adaptability, speed and reliability. This, combined with the development of artificially-intelligent automatic sensors can lead to the establishment of highly-reliable and systematic manufacturing systems. During the automation process, equipment process parameters frequently need to be adjusted to match the requirements of different processes. Thus how to best maintain normal equipment operation and stable quality through these frequent adjustments is a key issue for manufacturers. Therefore, high-quality automated production systems allowing for fast-changeover and real-time automatic detection and performance monitoring are effectively needed.


Author(s):  
Toby J. Lloyd-Jones ◽  
Juergen Gehrke ◽  
Jason Lauder

We assessed the importance of outline contour and individual features in mediating the recognition of animals by examining response times and eye movements in an animal-object decision task (i.e., deciding whether or not an object was an animal that may be encountered in real life). There were shorter latencies for animals as compared with nonanimals and performance was similar for shaded line drawings and silhouettes, suggesting that important information for recognition lies in the outline contour. The most salient information in the outline contour was around the head, followed by the lower torso and leg regions. We also observed effects of object orientation and argue that the usefulness of the head and lower torso/leg regions is consistent with a role for the object axis in recognition.


2012 ◽  
Author(s):  
R. A. Grier ◽  
H. Thiruvengada ◽  
S. R. Ellis ◽  
P. Havig ◽  
K. S. Hale ◽  
...  

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 26
Author(s):  
David González-Ortega ◽  
Francisco Javier Díaz-Pernas ◽  
Mario Martínez-Zarzuela ◽  
Míriam Antón-Rodríguez

Driver’s gaze information can be crucial in driving research because of its relation to driver attention. Particularly, the inclusion of gaze data in driving simulators broadens the scope of research studies as they can relate drivers’ gaze patterns to their features and performance. In this paper, we present two gaze region estimation modules integrated in a driving simulator. One uses the 3D Kinect device and another uses the virtual reality Oculus Rift device. The modules are able to detect the region, out of seven in which the driving scene was divided, where a driver is gazing at in every route processed frame. Four methods were implemented and compared for gaze estimation, which learn the relation between gaze displacement and head movement. Two are simpler and based on points that try to capture this relation and two are based on classifiers such as MLP and SVM. Experiments were carried out with 12 users that drove on the same scenario twice, each one with a different visualization display, first with a big screen and later with Oculus Rift. On the whole, Oculus Rift outperformed Kinect as the best hardware for gaze estimation. The Oculus-based gaze region estimation method with the highest performance achieved an accuracy of 97.94%. The information provided by the Oculus Rift module enriches the driving simulator data and makes it possible a multimodal driving performance analysis apart from the immersion and realism obtained with the virtual reality experience provided by Oculus.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 226
Author(s):  
Xuyang Zhao ◽  
Cisheng Wu ◽  
Duanyong Liu

Within the context of the large-scale application of industrial robots, methods of analyzing the life-cycle cost (LCC) of industrial robot production have shown considerable developments, but there remains a lack of methods that allow for the examination of robot substitution. Taking inspiration from the symmetry philosophy in manufacturing systems engineering, this article further establishes a comparative LCC analysis model to compare the LCC of the industrial robot production with traditional production at the same time. This model introduces intangible costs (covering idle loss, efficiency loss and defect loss) to supplement the actual costs and comprehensively uses various methods for cost allocation and variable estimation to conduct total cost and the cost efficiency analysis, together with hierarchical decomposition and dynamic comparison. To demonstrate the model, an investigation of a Chinese automobile manufacturer is provided to compare the LCC of welding robot production with that of manual welding production; methods of case analysis and simulation are combined, and a thorough comparison is done with related existing works to show the validity of this framework. In accordance with this study, a simple template is developed to support the decision-making analysis of the application and cost management of industrial robots. In addition, the case analysis and simulations can provide references for enterprises in emerging markets in relation to robot substitution.


2021 ◽  
Vol 1 ◽  
pp. 2127-2136
Author(s):  
Olivia Borgue ◽  
John Stavridis ◽  
Tomas Vannucci ◽  
Panagiotis Stavropoulos ◽  
Harry Bikas ◽  
...  

AbstractAdditive manufacturing (AM) is a versatile technology that could add flexibility in manufacturing processes, whether implemented alone or along other technologies. This technology enables on-demand production and decentralized production networks, as production facilities can be located around the world to manufacture products closer to the final consumer (decentralized manufacturing). However, the wide adoption of additive manufacturing technologies is hindered by the lack of experience on its implementation, the lack of repeatability among different manufacturers and a lack of integrated production systems. The later, hinders the traceability and quality assurance of printed components and limits the understanding and data generation of the AM processes and parameters. In this article, a design strategy is proposed to integrate the different phases of the development process into a model-based design platform for decentralized manufacturing. This platform is aimed at facilitating data traceability and product repeatability among different AM machines. The strategy is illustrated with a case study where a car steering knuckle is manufactured in three different facilities in Sweden and Italy.


Author(s):  
Yu-Sheng Yang ◽  
Alicia M. Koontz ◽  
Yu-Hsuan Hsiao ◽  
Cheng-Tang Pan ◽  
Jyh-Jong Chang

Maneuvering a wheelchair is an important necessity for the everyday life and social activities of people with a range of physical disabilities. However, in real life, wheelchair users face several common challenges: articulate steering, spatial relationships, and negotiating obstacles. Therefore, our research group has developed a head-mounted display (HMD)-based intuitive virtual reality (VR) stimulator for wheelchair propulsion. The aim of this study was to investigate the feasibility and efficacy of this VR stimulator for wheelchair propulsion performance. Twenty manual wheelchair users (16 men and 4 women) with spinal cord injuries ranging from T8 to L2 participated in this study. The differences in wheelchair propulsion kinematics between immersive and non-immersive VR environments were assessed using a 3D motion analysis system. Subjective data of the HMD-based intuitive VR stimulator were collected with a Presence Questionnaire and individual semi-structured interview at the end of the trial. Results indicated that propulsion performance was very similar in terms of start angle (p = 0.34), end angle (p = 0.46), stroke angle (p = 0.76), and shoulder movement (p = 0.66) between immersive and non-immersive VR environments. In the VR episode featuring an uphill journey, an increase in propulsion speed (p < 0.01) and cadence (p < 0.01) were found, as well as a greater trunk forward inclination (p = 0.01). Qualitative interviews showed that this VR simulator made an attractive, novel impression and therefore demonstrated the potential as a tool for stimulating training motivation. This HMD-based intuitive VR stimulator can be an effective resource to enhance wheelchair maneuverability experiences.


Sign in / Sign up

Export Citation Format

Share Document