Simulation of Improper Construction Procedure and Crack Analysis

2012 ◽  
Vol 204-208 ◽  
pp. 3236-3239 ◽  
Author(s):  
Wen Xiong Huang ◽  
Li Ying Tan

Based on the real construction technology, process and environment of Yuquanxi Bridge, the finite element method was applied in the research to make sure the crack mechanism and find out the impact of improper construction procedure on cracks of Block No.0. By comparing the numerical results with actual cracks condition, the impact of improper construction procedure on cracks of Block No.0 is uncovered clearly and it proves that to master of correct construction procedures and methodology is of great importance in construction a bridge.

2018 ◽  
Vol 196 ◽  
pp. 01055
Author(s):  
Sławomir Dudziak ◽  
Zofia Kozyra

Dynamic analyses play an important role in the process of designing buildings in the vicinity of transportation routes. The Finite Element Method is the most popular modelling technique, because it allows to simulate the structure response in the higher frequency range properly. However, the results of such analyses depend on many factors and can differ a lot. This paper discusses the impact of the building mass estimation and neglecting or including damping in the analysis on the assessment of influence of vibrations due to traffic on people.


2008 ◽  
Vol 45 (3) ◽  
pp. 393-407
Author(s):  
Chun Fai Leung ◽  
Rui Fu Shen

Gravity caissons were employed as part of the wharf front structures for a container port terminal in Singapore. This paper reports the movements of eight consecutive gravity caissons supported on sand compaction piles (SCPs) with highly variable lengths of penetration. It is established that the caisson movements increase with an increase in the length of the SCP, as longer SCPs are necessary when hard strata are at greater depth. The large caisson movements observed during caisson infilling and backfilling do not pose a concern because the wharf deck beams connecting adjacent caissons can be adjusted. However, the caisson movements under service loads would affect the operation of the overlying quay cranes on top of the caissons. The present field study reveals that preloading the caissons is effective in reducing the caisson movements under service loads because the observed caisson movements are insignificant during subsequent unloading–reloading of the caissons. Back-analysis using the finite element method (FEM) shows that the observed caisson movements at different construction stages can be reasonably replicated. The numerical results are also used to evaluate the caisson tilt angle, which could not be measured in the present field study. The caisson tilt is found to be independent of the length of SCPs underneath a caisson.


2012 ◽  
Vol 190-191 ◽  
pp. 23-27
Author(s):  
Jin Sha ◽  
Zhi Yuan Yao ◽  
Yang Jiao

This paper proposes an ultrasonic knife system for MEMS packaging. The ultrasonic knife system is consisted of an ultrasonic transducer, a cutter and a gripper feeder. The ultrasonic transducer engenders high frequency vibration, which lead to the resonance of the structure. Amplitude transformer can magnify the amplitude. By the impact and collision of the cutter, the material can be cut through, and the high temperature created by high-frequency vibration can do the welding. The structure is designed and optimized by the finite element method, and a model machine is produced. According to the experimental results, the ultrasonic knife system has the virtues of high cutting force and better wedding feature, which are suitable for MEMS packaging.


2009 ◽  
Vol 294 ◽  
pp. 27-38 ◽  
Author(s):  
Fabian Ferrano ◽  
Marco Speich ◽  
Wolfgang Rimkus ◽  
Markus Merkel ◽  
Andreas Öchsner

This paper investigates the mechanical properties of a new type of hollow sphere structure. For this new type, the sphere shell is perforated by several holes in order to open up the inner sphere volume and surface. The mechanical behaviour of perforated sphere structures under large deformations and strains in a primitive cubic arrangement is numerically evaluated by using the finite element method for different hole diameters and different joining techniques.


2012 ◽  
Vol 594-597 ◽  
pp. 387-390
Author(s):  
Yu Hu ◽  
Qiang Feng

With the saturated - unsaturated seepage theory, Hualianshu landslide is seepage numerical simulated by the finite element method .The changes of Hualianshu landslide seepage are subject to the impact of rainfall and reservoir water level's changes.The formation and variation of the slope seepage field under rainfall infiltration have been come to, providing a basis for analysis of slope stability and landslide prediction.


2013 ◽  
Vol 368-370 ◽  
pp. 756-759
Author(s):  
Jing Ma ◽  
Wen Sheng Chen ◽  
Xue Feng Hu

Based on the Finite Element Method ,a model has been built to study the impact of rigid pile composite foundation with lateral unloading,then obtained a conclusion about the horizontal displacement during excavating.


2011 ◽  
Vol 250-253 ◽  
pp. 3872-3875
Author(s):  
Rong Jian Li ◽  
Wen Zheng ◽  
Juan Fang ◽  
Gao Feng Che

The influence of structural strength on the lining moment of tunnel should be properly evaluated in order to meet the engineering demand in loess area. It is essential to analyze and evaluate the lining moment of tunnel by means of the finite element method under the condition of the different local weakening of structural strength in loess. Firstly, some researches on the structural strength of loess tunnel are reviewed. Then, some different cases of the local weakening of structural strength in loess are analyzed in this paper. Numerical results not only indicate that the lining moment of tunnel tends to change obviously with the different local weakening of the structural strength, but also reveal that the weakening location of structural strength has important effect on the distribution and redistribution of the lining moment of tunnel.


2010 ◽  
Vol 2 (2) ◽  
pp. 45-50 ◽  
Author(s):  
Hartmut Pasternak ◽  
Gabriel Kubieniec ◽  
Marek Piekarczyk

This study includes a detailed analysis of using adhesives in reinforcement of steel structures. Two types of structures were experimentally investigated: box girder and knee joints. The numerical calculations were done on the basis of the experimental investigations performed at CUT Cracow (box girder) and BTU Cottbus (knee joints) with the use of numerical programme Abaqus based on the Finite Element Method. The numerical results were compared with the experimental ones.


Author(s):  
Jan Steininger ◽  
Stefan Medvecky ◽  
Robert Kohar ◽  
Tomas Capak

The article deals with an optimization procedure of roller elements geometry with regard to durability of spherical roller bearings. The aim of the article is to examine the impact of change of the roller elements inner geometry on durability and reliability of spherical roller bearings; the contact strain along a spherical roller by means of the Finite Element Method at contact points of components of a spherical roller bearing by means of designed 3D parametric models. The most appropriate shape of roller elements inner geometry of a bearing from the standpoint of calculated durability was determined based on results of the contact analyses.


Sign in / Sign up

Export Citation Format

Share Document