Experimental Investigation on Autoclaved Aerated Concrete Using Palladium-Platinum Tailings

2012 ◽  
Vol 217-219 ◽  
pp. 1195-1199
Author(s):  
Ye Zhang ◽  
Peng Xuan Duan ◽  
Bao Sheng Jia ◽  
Fan Zhang

In this paper, the low-silicon palladium-platinum tailing is used to produce autoclaved aerated concrete. The influences of water binder ratio, palladium-platinum tailing content, lime content and conditioning agents on the compressive strength of the autoclaved aerated concrete are investigated. Optimal raw material formulation and procedure are determined for the autoclaved aerated concrete. The compressive strength and frost resistance of autoclaved aerated concrete made by the optimal raw material formulation and procedure meet with the requirements of autoclaved aerated concretes of B06 grade, and its thermal conductivity, drying shrinkage reach the requirements of the relevant national standards of China.


2013 ◽  
Vol 357-360 ◽  
pp. 949-954
Author(s):  
Ye Zhang ◽  
Peng Xuan Duan ◽  
Bao Sheng Jia ◽  
Lei Li

In this paper, the low-silicon coal gangue fly ash is used to produce autoclaved aerated concrete. The influences of water binder ratio, coal gangue fly ash content, calcareous content and conditioning agents on the compressive strength of the autoclaved aerated concrete are investigated. Optimal raw material formulation and procedure are determined for the autoclaved aerated concrete. The compressive strength and frost resistance of autoclaved aerated concrete made by the optimal raw material formulation and procedure meet with the requirements of autoclaved aerated concretes of B05 grade, and its thermal conductivity, drying shrinkage reach the requirements of the relevant national standards of China.



2013 ◽  
Vol 395-396 ◽  
pp. 433-438 ◽  
Author(s):  
Ye Zhang ◽  
Peng Xuan Duan ◽  
Bao Sheng Jia ◽  
Lei Li

In this paper, compared with common fly ash, the low-silicon coal gangue fly ash is used to produce fly ash autoclaved aerated concrete. The influences of water binder ratio, coal gangue fly ash content, calcareous content and conditioning agents on the compressive strength of the autoclaved aerated concrete are investigated. The results indicate the coal gangue fly ash has different properties from the common fly ash such as its granule appearance and the activity as AAC siliceous raw material. It is noting that the coal gangue fly ash can also be used to prepare AAC blocks by optimizing the raw material formulation and procedure and its B05 product can reach the China top industrial standard.



2014 ◽  
Vol 1000 ◽  
pp. 174-177 ◽  
Author(s):  
Ondřej Koutný ◽  
Tomáš Opravil ◽  
Jaromír Pořízka

In these days, autoclaved aerated concrete research points to the utilization of alternative raw materials such as metakaoline. An effort is made to improve the mechanical and related heat-insulation properties of the products without significant change of present technology and price. This work studies the effect of metakaoline, as an alternative raw material to Portland cement, on final properties of autoclaved aerated concrete, especially the effect on the volume weight and compressive strength. Quantitative and qualitative mineralogical composition, especially the presence and the amount of Tobermorite and Xonotlite were observed by XRD and TG-DTA-EGA methods.



2013 ◽  
Vol 712-715 ◽  
pp. 917-920
Author(s):  
Lian Xi Wang ◽  
Guang Hui Pan ◽  
Fu Yong Li ◽  
Hai Ming Wang ◽  
Guo Zhong Li

Construction garbage paving bricks were made of recycled coarse and fine aggregates which were prepared by the waste concrete. The influence of replacement rate of recycled coarse aggregates, water-binder ratio and excitation agent dosage on the compressive strength and flexural strength of construction garbage paving bricks were researched. The experimental results show that optimum replacement rate of recycled coarse aggregates, water-binder ratio and excitation agent dosage were 100%, 0.43 and 1.5% respectively. In this proportion, the 7d, 28d compressive strength of the products were 15.6MPa, 37.5MPa respectively, and the 7d, 28d flexural strength were 2.0MPa, 4.3MPa respectively, which fit the requirements of the Cc30 level of compressive strength and the Cf4.0 level of flexural strength involved in JCT 446-2000 "concrete pavers".



2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Hong-zhu Quan ◽  
Hideo Kasami

In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%–20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized.





Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3148 ◽  
Author(s):  
Hongyan Chu ◽  
Fengjuan Wang ◽  
Liguo Wang ◽  
Taotao Feng ◽  
Danqian Wang

Ultra-high-performance concrete (UHPC) has received increasing attention in recent years due to its remarkable ductility, durability, and mechanical properties. However, the manufacture of UHPC can cause serious environmental issues. This work addresses the feasibility of using aeolian sand to produce UHPC, and the mix design, environmental impact, and mechanical characterization of UHPC are investigated. We designed the mix proportions of the UHPC according to the modified Andreasen and Andersen particle packing model. We studied the workability, microstructure, porosity, mechanical performance, and environmental impact of UHPC with three different water/binder ratios. The following findings were noted: (1) the compressive strength, flexural strength, and Young’s modulus of the designed UHPC samples were in the ranges of 163.9–207.0 MPa, 18.0–32.2 MPa, and 49.3–58.9 GPa, respectively; (2) the compressive strength, flexural strength, and Young’s modulus of the UHPC increased with a decrease in water/binder ratio and an increase in the steel fibre content; (3) the compressive strength–Young’s modulus correlation of the UHPC could be described by an exponential formula; (4) the environmental impact of UHPC can be improved by decreasing its water/binder ratio. These findings suggest that it is possible to use aeolian sand to manufacture UHPC, and this study promotes the application of aeolian sand for this purpose.



2013 ◽  
Vol 724-725 ◽  
pp. 1580-1584
Author(s):  
Ming Ru Zhou ◽  
Zheng Bo Li ◽  
Qiong Fei Shen ◽  
Zhong Yu Guo

Concrete valuation work is mainly on the composition of concrete raw material pricing, different concrete mixture ratio has decisive influence on the valuation. Concrete mix is influenced by many parameters, such as water-binder ratio, sand percentage, unit water and so on. The mixture ratio is the purpose to research the inner relationship between concrete parameters.In the preparation of the consumption of the concrete norm, analysis to the reasonable mix can not only make valuation work accords with the specification requirements, but meet the practice.



2018 ◽  
Vol 8 (8) ◽  
pp. 1217 ◽  
Author(s):  
Hanbing Liu ◽  
Guobao Luo ◽  
Haibin Wei ◽  
Han Yu

Pervious concrete (PC), as an environmental friendly material, can be very important in solving urban problems and mitigating the impact of climate change; i.e., flooding, urban heat island phenomena, and groundwater decline. The objective of this research is to evaluate the strength, permeability, and freeze-thaw durability of PC with different aggregate sizes, porosities, and water-binder ratios. The orthogonal experiment method is employed in the study and nine experiments are conducted. The compressive strength, flexural strength, permeability coefficient, porosity, density, and freeze-thaw durability of PC mixtures are tested. Range analysis and variance analysis are carried out to analyze the collected data and estimate the influence of aggregate size, porosity, and water-binder ratio on PC properties. The results indicate that porosity is the most important factor determining the properties of PC. High porosity results in better permeability, but negatively affects the mechanical strength and freeze-thaw durability. PC of 15% porosity can obtain high compressive strength in excess of 20 MPa and favorable freeze-thaw durability of 80 cycles without sacrificing excessive permeability. Aggregate size also has a significant effect on freeze-thaw durability and mechanical strength. Small aggregate size is advantageous for PC properties. PC with 4.75–9.5 mm coarse aggregate presents excellent freeze-thaw durability. The influence of the water-binder ratio on PC properties is not as significant as that of aggregate size and porosity. An optimal mix ratio is required to trade-off between permeability, mechanical strength, and freeze-thaw durability.



2017 ◽  
Vol 866 ◽  
pp. 99-103
Author(s):  
Woravith Chansuvarn

A batch process of defluoridation using raw material of autoclaved aerated concrete (AAC) was studied under optimum conditions. The parameters of adsorption method, such as pH, adsorbent dose and contact time were optimized under batch experiments. SPADNS method was used to quantitatively evaluate the residual fluoride concentration. Under optimum conditions, pH of solution, adsorbent dose and contact time was to be 7, 0.1 g/10 mL and 60 min, respectively. The amount of defluoridation was found to be 3.23 mgF-/gACC. Deflouridation capacity of AAC can be explained on the basis of the chemical interaction of fluoride with the metal oxides under suitable pH conditions. The adsorption process was found to follow first order rate mechanism as well as Freundlich isotherm.



Sign in / Sign up

Export Citation Format

Share Document