Research in the Preparation of Paving Bricks with Construction Garbage

2013 ◽  
Vol 712-715 ◽  
pp. 917-920
Author(s):  
Lian Xi Wang ◽  
Guang Hui Pan ◽  
Fu Yong Li ◽  
Hai Ming Wang ◽  
Guo Zhong Li

Construction garbage paving bricks were made of recycled coarse and fine aggregates which were prepared by the waste concrete. The influence of replacement rate of recycled coarse aggregates, water-binder ratio and excitation agent dosage on the compressive strength and flexural strength of construction garbage paving bricks were researched. The experimental results show that optimum replacement rate of recycled coarse aggregates, water-binder ratio and excitation agent dosage were 100%, 0.43 and 1.5% respectively. In this proportion, the 7d, 28d compressive strength of the products were 15.6MPa, 37.5MPa respectively, and the 7d, 28d flexural strength were 2.0MPa, 4.3MPa respectively, which fit the requirements of the Cc30 level of compressive strength and the Cf4.0 level of flexural strength involved in JCT 446-2000 "concrete pavers".

2013 ◽  
Vol 639-640 ◽  
pp. 399-403
Author(s):  
Ai Guo Zhou ◽  
Jian Yin ◽  
Wei Min Song ◽  
Yi Chi

It is studied the effect of binder quantity, water binder ratio on properties of self-compacting concrete made with recycled coarse aggregates. It can be prepared C50 self-compacting concrete made with recycled coarse aggregate by adjusting send proportion, binder quantity, and mixing mineral additive. For example, when the binder quantity is 600 kg/m3, water binder ratio is 0.28, the flexural strength and compressive strength at 28 days of self-compacting concrete made with recycled coarse aggregates are 9.07 MPa and 68.47 MPa respectively.


2018 ◽  
Vol 18 (1) ◽  
pp. 49-58
Author(s):  
Roza Mildawati

[ID] Concrete is a very popular building material used in the world of construction services, consisting of a mixture of Portland Cement (PC) or other hydraulic cement, fine aggregates, coarse aggregates and water, with or without using additional materials. The quality of materials such as cement also greatly affects the strength of the concrete after hardening, so the selection of cement quality must be in accordance with the concrete planning regulations in order to obtain optimal results. In Indonesia there are many new cement factories that produce to meet the needs of the community, one of which is the Conch brand cement. So in connection with the above, Conch cement can be examined to compare the value of compressive strength and flexural strength with old cement, namely cement Padang, Tiga Roda, Holcim and Bosowa which are generally always used in concrete planning at this time.The purpose of this study was to determine the comparison of compressive strength and flexural strength of the concrete and the multiplier between cement Padang, Three Wheels and Conch at 28 days of age. In this study using the method SNI 03-2834-2000. With cylindrical test specimens (150 mm x 300 mm) and size beams (150 mm x 150 mm x 600 mm) three specimens were made for each cement.The maximum concrete compressive strength is found in Padang cement with a compressive strength of 45.86 Mpa, for the minimum compressive strength found in Tiga Roda cement with compressive strength value of 40.19 Mpa and for the compressive strength of cement Conch there is a second with compressive strength value 42.84 Mpa. From the explanation above, the results of 28 days of concrete compressive strength with each cement brand still not reached the planned concrete compressive strength of 38 MPa. The maximum concrete flexural strength is found in Padang cement with a flexural strength value of 5.03 Mpa, for a minimum flexural strength value found in Tiga Roda cement with a flexural strength value of 3.96 Mpa and for the value of Conch cement compressive strength there is a second with flexural strength 4.43 Mpa. From the explanation above, the results of 28 days of concrete flexural strength with each cement brand that has not reached the 4.4 Mpa plan, namely the three-wheeled cement brand. [EN] Concrete is a very popular building material used in the world of construction services, consisting of a mixture of Portland Cement (PC) or other hydraulic cement, fine aggregates, coarse aggregates and water, with or without using additional materials. The quality of materials such as cement also greatly affects the strength of the concrete after hardening, so the selection of cement quality must be in accordance with the concrete planning regulations in order to obtain optimal results. In Indonesia there are many new cement factories that produce to meet the needs of the community, one of which is the Conch brand cement. So in connection with the above, Conch cement can be examined to compare the value of compressive strength and flexural strength with old cement, namely cement Padang, Tiga Roda, Holcim and Bosowa which are generally always used in concrete planning at this time.The purpose of this study was to determine the comparison of compressive strength and flexural strength of the concrete and the multiplier between cement Padang, Three Wheels and Conch at 28 days of age. In this study using the method SNI 03-2834-2000. With cylindrical test specimens (150 mm x 300 mm) and size beams (150 mm x 150 mm x 600 mm) three specimens were made for each cement.The maximum concrete compressive strength is found in Padang cement with a compressive strength of 45.86 Mpa, for the minimum compressive strength found in Tiga Roda cement with compressive strength value of 40.19 Mpa and for the compressive strength of cement Conch there is a second with compressive strength value 42.84 Mpa. From the explanation above, the results of 28 days of concrete compressive strength with each cement brand still not reached the planned concrete compressive strength of 38 MPa. The maximum concrete flexural strength is found in Padang cement with a flexural strength value of 5.03 Mpa, for a minimum flexural strength value found in Tiga Roda cement with a flexural strength value of 3.96 Mpa and for the value of Conch cement compressive strength there is a second with flexural strength 4.43 Mpa. From the explanation above, the results of 28 days of concrete flexural strength with each cement brand that has not reached the 4.4 Mpa plan, namely the three-wheeled cement brand.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 707 ◽  
Author(s):  
Yanru Wang ◽  
Yubin Cao ◽  
Peng Zhang ◽  
Yuwei Ma

The purpose of this study is to investigate the availability of waste glass as alternative materials in sustainable constructions. Collected waste glass was ground into waste glass powder (WGP) with similar particle size distribution as Portland cement (PC) and waste glass sand (WGS) with similar grade as sand. The compressive strength was investigated through the Taguchi test to evaluate the effect of different parameters on WGP-blended mortar, which include WG-replacement rate (G/B, 0, 10%, 20%, 30%), water/binder ratio (w/b, 0.35. 0.40, 0.50, 0.60), cementitious material dosage (Cpaste, 420, 450, 480, 500 kg/m3), and color of powder (green (G) and colorless (C)). The alkali–silica reaction (ASR) expansion risk of WGS-blended mortar was assessed. The experimental results indicated that WGP after 0.5 h grinding could be used as substituted cement in mortar and help to release potential ASR expansion. The replacement rate played a dominant role on strength at both the early or long-term age. The water/binder ratio of 0.35 was beneficial to the compressive strength at three days and 0.50 was better for strength at 60 and 90 days. An optimal value of cementitious material dosage (450 Kg/m3) exited in view of its strength, while the effect of the color of WG was minor. WGS could be graded as standard construction sand and no ASR expansion risk was found even for 100% replacement of regular sand in mortar. Through the comprehensive reuse of waste glass, this study could provide basic knowledge and a concept for the sustainable development of building materials.


2019 ◽  
Vol 22 ◽  
pp. 150-154
Author(s):  
Tomáš Žižlavský ◽  
Martin Vyšvařil ◽  
Pavla Rovnaníková

The study focuses on the influence of addition of four different biopolymers in various doses (0.1%, 0.5%, and 1%) on the physical-mechanical properties and durability of NHL 3.5 mortars prepared with constant water/binder ratio and the binder/aggregate ratio of 1 : 2 by weight. The flow table test was carried out and the specimens were tested for flexural and compressive strength at the age of 7 and 28 days. The durability coefficient for the flexural strength was calculated after 15 freezing-thawing cycles. All the admixtures have dosage-dependent slump reducing effect. The strengths were increased in comparison with mortar with no admixture, the most significantly in the case of highest dose of carrageenan and diutan gum. All biopolymers with the exception of diutan gum increased the durability coefficient with increasing dosage. Sodium salt of alginic acid has been found the most effective in the case of durability improvement.


2014 ◽  
Vol 670-671 ◽  
pp. 437-440 ◽  
Author(s):  
Fan Wang ◽  
Shan Suo Zheng ◽  
Xiao Fei Wang

With the improvement of concrete materials and the emergence of new materials, adding silica fume to high-performance concrete (HPC) has been one of the important ways in concrete technology. In this paper, through experimental study on the mechanical performance of HPC with 5%, 10%, 15% and 20% silica fume replacing cement for different water-binder ratio, along with polycarboxylates high performance water-reducing admixture, silica fume has large effects on 28d compressive strength, split tensile strength and flexural strength of the HPC. Meanwhile, due to the different level of water-binder ratio, the relationship between split tensile strength, flexural strength and compressive strength is also obvious linear.


2011 ◽  
Vol 477 ◽  
pp. 142-147
Author(s):  
Tian Yong Huang ◽  
Yun Fen Hou

Limestone powder and coal ash are selected to prepare compound cementitious material with clinker. It is found that with the increasing of mixture (including limestone powder and coal ash), the water amount for standard consistency of compound cementitious material increases and the flexural strength and compressive strength at 3 and 28 days decrease. Increasing of limestone powder can reduces the water amount for standard consistency. The compressive strength, flexural strength and cleavage strength decrease with the increasing of mixture. If the mixture dosage is 60%, when the ratio of limestone powder and coal ash is 8:2, the compressive strength is the highest. If the mixture dosage increases to 70%, when the ratio of limestone powder and coal ash is 7:3, the compressive strength is the highest. If the mixture dosage is 80%, the all strengths are very low. The compressive strength increases significantly with time, the compressive strength is greater than 50MPa at 90 days. Although the mortar strength of compound cementitious material is far below for mortar strength required by cement standard, but the middle-low strength grade concrete can be prepared by low water-binder ratio.


2012 ◽  
Vol 476-478 ◽  
pp. 1585-1588
Author(s):  
Hong Pan ◽  
Guo Zhong Li

The comprehensively modified effect of cement, VAE emulsion and self-made acrylic varnish on mechanical and water-resistant properties of gypsum sample was investigated and microstructure of gypsum sample was analyzed. Experimental results exhibit that absolutely dry flexural strength, absolutely dry compressive strength, water absorption and softening coefficient of gypsum specimen with admixture of 10% ordinary Portland cement and 6% VAE emulsion and acrylic varnish coated on its surface can respectively reach to 5.11MPa , 10.49 MPa, 8.32% and 0.63, respectively.


2015 ◽  
Vol 773-774 ◽  
pp. 949-953 ◽  
Author(s):  
Izni Syahrizal Ibrahim ◽  
Wan Amizah Wan Jusoh ◽  
Abdul Rahman Mohd Sam ◽  
Nur Ain Mustapa ◽  
Sk Muiz Sk Abdul Razak

This paper discusses the experimental results on the mechanical properties of hybrid fibre reinforced composite concrete (HyFRCC) containing different proportions of steel fibre (SF) and polypropylene fibre (PPF). The mechanical properties include compressive strength, tensile strength, and flexural strength. SF is known to enhance the flexural and tensile strengths, and at the same time is able to resist the formation of macro cracking. Meanwhile, PPF contributes to the tensile strain capacity and compressive strength, and also delay the formation of micro cracks. Hooked-end deformed type SF fibre with 60 mm length and fibrillated virgin type PPF fibre with 19 mm length are used in this study. Meanwhile, the concrete strength is maintained for grade C30. The percentage proportion of SF-PPF fibres are varied in the range of 100-0%, 75-25%, 50-50%, 25-75% and 0-100% of which the total fibre volume fraction (Vf) is fixed at 0.5%. The experimental results reveal that the percentage proportion of SF-PPF fibres with 75-25% produced the maximum performance of flexural strength, tensile strength and flexural toughness. Meanwhile, the percentage proportion of SF-PPF fibres with 100-0% contributes to the improvement of the compressive strength compared to that of plain concrete.


2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


2020 ◽  
Vol 2 (1) ◽  
pp. 31-57
Author(s):  
Ni Ketut Sri Astati Sukawati

Concrete with various variants is a basic requirement in building a building. The concrete mixture is diverse depending on the planning made beforehand. The cement mixture is usually in the form of a mixture of artificial stone, cement, water and fine aggregates and coarse aggregates. Aggregates (fine aggregates and coarse aggregates) function as fillers in concrete mixtures. (Subakti, A., 1994). However, in building construction, additives are often added, but there is still a sense of uncertainty at the time of dismantling the mold and the reference before the concrete reaches sufficient strength to carry its own weight and the carrying loads acting on it. To overcome the time of carrying out work related to concrete, it is necessary to find an alternative solution, for example by looking for alternative ingredients of concrete mixture on the basis of consideration without reducing the quality of the concrete. From the results of previous studies it was stated that due to the partial replacement of cement with Fly Ash, the strength of the pressure and tensile strength of the concrete had increased (Budhi Saputro, A., 2008). Based on the description above, the author seeks to examine how the compressive strength of concrete characteristics that occur by adding additives Addition H.E in the concrete mixture and is there any additive Additon H.E effect on the increase in the compressive strength characteristic of the concrete. From the results of the study, it was found that the compressive strength of the concrete with the addition of additives HE was that after the compressive strength test of the concrete cube was carried out and the analysis of concrete compressive strength of 10 specimens, in each experiment a cube specimen was made with the addition of additons. HE with a dose of 80 cc, 120 cc, and 200 cc can accelerate and increase the compressive strength of concrete characteristics.


Sign in / Sign up

Export Citation Format

Share Document