Experimental Evaluation of Surface Roughness in Orthogonal Micro-Milling Processes

2012 ◽  
Vol 217-219 ◽  
pp. 1912-1916
Author(s):  
Ji Hua Wu

Surface roughness plays a critical role in evaluating and measuring the surface quality of a machined product. Two workpiece materials have been investigated by experimental approach in order to gain a better understanding of their influence on the obtained surface roughness in the micro-milling processes. The experimental results show that: surface topography is completely different for different materials at the same cutting speed and feed rate; surface roughness increases with an increase of material grain size. Surface roughness decreases to a lowest value, and then increases with an increase of the feed rate. A new surface model to illustrate the influence of material and uncut chip thickness was developed. The model has been experimentally validated and shows more promising results than Weule’s model.

2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


2015 ◽  
Vol 727-728 ◽  
pp. 354-357
Author(s):  
Mei Xia Yuan ◽  
Xi Bin Wang ◽  
Li Jiao ◽  
Yan Li

Micro-milling orthogonal experiment of micro plane was done in mesoscale. Probability statistics and multiple regression principle were used to establish the surface roughness prediction model about cutting speed, feed rate and cutting depth, and the significant test of regression equation was done. On the basis of successfully building the prediction model of surface roughness, the diagram of surface roughness and cutting parameters was intuitively built, and then the effect of the cutting speed, feed rate and cutting depth on the small structure surface roughness was obtained.


Author(s):  
Xiao-fen Liu ◽  
Wen-hu Wang ◽  
Rui-song Jiang ◽  
Yi-feng Xiong ◽  
Kun-yang Lin ◽  
...  

Abstract The current state of surface roughness focuses on the 2D roughness. However, there are shortcomings in evaluating surface quality of particle reinforced metal matrix composites using 2D roughness due to the fact that the measuring direction has a vital impact on the 2D roughness value. It is therefore of great importance and significance to develop a proper criterion for measuring and evaluating the surface roughness of cutting particle reinforced metal matrix composites. In this paper, an experimental investigation was performed on the effect of cutting parameters on the surface roughness in cutting in-situ TiB2/7050Al MMCs. The 2D roughness Ra, 3D roughness Sa and Sq were comparatively studied for evaluating the machined surface quality of in-situ TiB2/7050Al MMCs. The influence of cutting parameters on the surface roughness was also analyzed. The big difference between roughness Ra measured along cutting and feed directions showed the great impact of measuring direction. Besides, surface defects such as pits, grooves, protuberances and voids were observed, which would influence 2D roughness value greatly, indicating that 3D roughness was more suitable for evaluating surface quality of cutting in-situ TiB2/7050Al MMCs. The cutting depth and feed rate were found to have the highest influence on 3D roughness while the effect of cutting speed was minimal. With increasing feed rate, cutting depth or width, the 3D roughness increased accordingly. But it decreased as cutting speed increased.


2013 ◽  
Vol 837 ◽  
pp. 128-134 ◽  
Author(s):  
Gheorghe Mustea ◽  
Gheorghe Brabie

The use of magnesium alloys in construction of different components of the mechanical systems (such: cars, aerospace vehicles, medical equipment etc.) is very efficient not only because it leads to reduction of the systems weight but also because it leads to reduction or elimination of the environment polluting and to reduction of the energy consumption. Generally, the main factors that influence the quality of the machined surfaces are as follows: cutting parameters, material properties, geometry of the tools, cooling liquids and lubricants, physical and mechanical properties of the subsurface layers etc. Among the above mentioned factors, cutting parameters are the factors that strongly influence the quality of the machined surfaces. The present paper analysis the results of the experimental investigation performed to determine the influence of cutting parameters (cutting speed, feed rate and cutting depth) on the surface quality machined by turning the AZ61 magnesium alloy. The main characteristics of the machined surface quality analyzed in experimental investigation were the surface roughness and hardness. The main conclusions resulted from the results analysis were as follows: the decrease of the feed rate led to surface roughness decrease and hardness increase; the increase of the cutting speed also led to an improved surface quality.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Qi Gao ◽  
Po Jin ◽  
Guangyan Guo

Micro milling is a machining method of high precision and efficiency for micro components and features. In order to study the surface quality of single crystal materials in micro milling, the two-edged cemented carbide tool milling cutter with 0.4 mm diameter was used, and the orthogonal experiment was completed on the micro-milling of single crystal aluminum material. Through the analysis of statistical results, the primary and secondary factor which impacting on surface quality were found as follows: spindle speed, feed rate, milling depth. The ideal combination of optimized process parameters were obtained, when the spindle speed was 36000 r/min, the milling depth was 10 μm, the feed rate was 80 μm/s, which made the milling surface roughness is 0.782 μm and minimal. Single crystal materials removal mechanism were revealed, and the influence of cutting parameters on micro-milling surface were discussed, the reason of tool wear was analyzed. Those provide a certain theoretical and experimental basis for micro milling of single crystal materials.


SINERGI ◽  
2019 ◽  
Vol 23 (2) ◽  
pp. 139
Author(s):  
M. Sobron Yamin Lubis ◽  
Erwin Siahaan ◽  
Steven Darmawan ◽  
Adianto Adianto ◽  
Ronald Ronald

In the metal machining process, cutting speed and feed rate are cutting parameters that affect the surface quality of the workpiece produced. The use of improper cutting parameters can cause the workpiece surface to be rough, and the cutting toolage to be shorter. This study was conducted to determine the effect of cutting parameters and the use of carbide tools on the surface roughness of metal steel workpieces. The research was carried out using the experimental method of AISI 4340 steel metal workpiece turning using cutting tool coated. Five variations of cutting speed used are: 140 m/min, 150 m/min, 160 m/min, 170 m/min, 180 m/min and three variations in feed rate: 0.25 mm/rev, 0.3 mm/rev, 0.35 mm/rev. After the turning process, the surface roughness of the workpiece is measured using a surface tester. From the results of the study, it was found that the surface roughness value was directly proportional to the feed rate and inversely proportional to the cutting speed. The smallest surface roughness value is 9.56 μm on cutting speed 180 m / min, and feed rate is 0.25 mm/rev. 


2016 ◽  
Vol 835 ◽  
pp. 236-241
Author(s):  
P.Y.M. Wibowo Ndaruhadi ◽  
Bambang Santosa

Drilling process has many applications including making molds and dies, all requires different quality of the drilled hole. The aim of this study is to establish models and optimization of cutting parameter to get the best hole quality, including enlargement diameter, circularity error and surface roughness in drilling hardened steel. Drilling experiments have been performed using different cutting parameters (i.e. cutting speed and feed rate) and employ and uncoated carbide drill under flooded cooling. The experimental results show that both of the cutting speed and feed rate significantly affect all responses. Models for responses have been developed for investigation in this study, and their optimizations have been obtained, showing better quality of the drilled hole produced at higher cutting speed and lower feed rate. Desirability for the optimum criteria is 0.944 at the highest cutting speed (60 m/min) and lowest feed rate (0.05 mm/rev).


Author(s):  
Xiubing Jing ◽  
Yanling Tian ◽  
Yanjie Yuan

This paper presented the effect of run out on the experimental characteristic of micro-milling brass using carbide micro-end mills. A method of calculation and measurement for the run out of tool-holder-spindle assembly in micro-end mill was developed. A series of micro-milling process experiments were carried out under varying cutting parameters. The effect of run out on cutting forces, effect of cutting parameters on surface roughness, and size effect were analyzed. It was seen that the cutting force signature was seriously affected by run out in the micro-milling process. When the feed per tooth is less than the run out, the cutting force signals showed that only one cutter flute engaged in cutting process due to the effect of run out. It was also seen that the cutting force signature showed erratic variations due to the effect of tool–workpiece and the run out of tool tip at higher spindle speed. Surface roughness was affected by both cutting speed and feed per tooth. For lower cutting speed, there was increase in the surface roughness with the decrease in the cutting speed due to the effect of built-up edge. For higher cutting speed, there was increase in the surface roughness with the increase in the cutting speed due to dominance of the shearing effects. When the feed per tooth was less than the minimum chip thickness, due to the indentation and ploughing-dominated process, nonlinear increase of specific shear energy can be obtained. At lower feed per tooth, the specific energy increases with increased cutting speed. These results are used to provide strategies to optimize cutting parameters and achieve better surface quality in micro-milling brass process.


2014 ◽  
Vol 598 ◽  
pp. 181-188
Author(s):  
Elssawi Yahya ◽  
Guo Fu Ding ◽  
Sheng Feng Qin

Surface roughness is strongly affected by machining parameters. In the past few decades, many researchers have established the relationship between the surface roughness and machining parameters, but less attention has been paid to tool shape and geometry. In addition, the number of tool flutes was ignored, which affects in vibrations and machining system. Therefore, this study first-time includes the tool flutes in addition to cutting speed, depth of cut and feed rate as independent variables. Firstly, a set of machining experiments were conducted using AA6061 as a work piece material to provide original data. Response Surface Model (RSM) adopted to establish the relationship model of surface roughness and machining parameters using Minitab 16. Based on analysis of variance (ANOVA), the results show cutter flutes has higher significant followed by feed rate, depth of cut and cutting speed which has less significant. Finally, machining parameters were optimized to desired surface roughness, and optimization prediction error has limited values between-0.02 and 0.02μm.


2014 ◽  
Vol 1079-1080 ◽  
pp. 3-6 ◽  
Author(s):  
Denison Baldo ◽  
Sergio Luiz Moni Ribeiro Filho ◽  
Carlos Henrique Lauro ◽  
Andrea Cristiane dos Santos Delfino ◽  
Lincoln Cardoso Brandao

This work shows a study on the micro milling of Ti-6Al-4V Titanium alloy where the effect of tool wear on the surface finish of the machined part was analyzed. New and worn micro cutters were applied to produce grooves with 0.5 mm of width and 0.025 mm of heights. The surface roughness was measured in the Ra and Rz values and the results showed that the surface roughness was not influenced by the tool’s condition. However, when new tools were used the increase of cutting speed generated an improving of the surface roughness and the same effect occurred with the decrease of feed rate.


Sign in / Sign up

Export Citation Format

Share Document