Study on Deformation-Based Seismic Performance Index of Arch Dams

2012 ◽  
Vol 226-228 ◽  
pp. 1401-1405
Author(s):  
Xiao Wen Yao ◽  
Jian Qun Jiang

Concrete arch dams are critical structures, the failure of which would lead to catastrophic effects on a regional scale. Considering the uncertainty characteristics of earthquake and the self-adjustment of inner force of arch dams, it’s necessary to investigate the seismic performance index of arch dam for holistically evaluating the seismic safety of arch dam-foundation system subjected to high intensity seismic excitations. By considering the contraction joints movement and concrete material nonlinearity, a series of dynamic response-history analyses of arch dam were carried out under increasing levels of earthquakes. Based on these analyses, the performance index of crest deformation is recommended for the seismic safety assessment of arch dam. And several performance stages of seismic response including the opening of contraction joints and the distribution of concrete damage are also investigated.

2010 ◽  
Vol 29-32 ◽  
pp. 1476-1480
Author(s):  
Zhi Guo Niu ◽  
Jun Lu ◽  
Ri You

To reasonably evaluate the seismic behavior of high arch dams, a damage plasticity model is adopted to simulate the dynamic nonlinear behavior of dam concrete for a hydropower station. Combining with the viscous-spring boundary and compressibility reservoir model, the maximum principal stress on upstream and downstream surfaces is obtained. The results show that the effects of material nonlinearity damage on the dynamic response of the arch dam are significant under earthquake load.


Author(s):  
Nishiuchi Tatsuo

In order to estimate the seismic safety of existing arch dams, it is essential to assess the static behavior and the mechanical resistance of arch dam. Numerical analysis model for transverse joints (contraction joints) of the arch dam is developed considering the separation, sliding and re-contact behaviors of contraction joints. The static behaviors of an arch dam under annual change of temperature and water level were calculated by using non-linear three-dimensional finite element analysis method that incorporated the developed numerical analysis model of contraction joints. The displacement of the dam body was compared both in analysis and in measured data. At a result, the calculated results can give a good estimation for dam deformation of an existing arch dam caused by those loads. In addition, the effective arch zone was formed under consecutive contraction joints. Thus, the nature of load capacity mechanism was identified. Using these calculated results, the numerical prediction on the displacement of an existing arch dam was proposed for daily management.


2019 ◽  
Vol 19 (07) ◽  
pp. 1950066 ◽  
Author(s):  
Hui Liang ◽  
Shengshan Guo ◽  
Jin Tu ◽  
Deyu Li

Parameter uncertainty associated with concrete arch dams always arises from modeling assumptions and the lack of knowledge or information of the engineering geological situations, especially in the seismic stability analysis of arch dams. In this research, a high arch dam is selected as a case study for probabilistic analysis of the seismic stability performance. The arch dam abutment and the dam are coupled as a system. A comprehensive approach considering contraction joints, boundaries of the probable sliding rock mass and the dam-foundation interface is presented. The contact nonlinearity is solved by using the dynamic contact model with Lagrange multiplier method. The main parameters of the probable sliding block are considered as random variables containing the friction coefficients and cohesions. Both the slippage and sliding area ratio are chosen as the engineering demand parameters (EDP). The sensitivity analysis is performed to reveal the relative influence of each parameter separately by the approximate incremental dynamic analysis (IDA) method. The friction coefficients are shown to be more crucial than the cohesions on the dam’s resistance to seismic instability. The sliding area ratio can be better used for unveiling the sliding process of the arch dam of concern, while the slippage is useful for one to judging the stability of the arch dam under seismic hazards. The Latin hypercube sampling (LHS) with approximate moment estimation is used to investigate the parameter uncertainty to the seismic stability performance of the high arch dam. The results provide a useful reference for using the median/mean-parameter model to accurately estimate the median/mean response of the dam.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Mohammad Amin Hariri Ardebili ◽  
Hasan Mirzabozorg

Seismic failure of major concrete dams can be disastrous due to sudden release of reservoir water. At the present study, 203 m DEZ arch dam was selected as case study, and two types of nonlinearity were incorporated in seismic analysis of dam, joint nonlinearity and material nonlinearity. The finite element model of the dam, soil, and water was excited using multicomponent maximum design earthquake record which was extracted from seismic hazard analysis of the dam site. Also seismic performance of the dam was evaluated based on linear analysis. The extension of overstressed areas, demand-capacity ratio, and cumulative inelastic duration were used to identify the necessity of nonlinear analysis. It was found that when contraction joints between dam blocks are modeled, the direction of the principal stresses and their distribution patterns are changed meaningfully. In addition, overstress surfaces on the dam body change in comparison with the model without contraction joints.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shengshan Guo ◽  
Jianxin Liao ◽  
Hailong Huang ◽  
Hui Liang ◽  
Deyu Li ◽  
...  

The contraction joints of arch dams with and without shear keys are simplified to be with no-slip condition and with relative sliding condition, respectively. Based on the Lagrange multiplier method, a contact model considering the manner of independent cantilever dead load type with no-slip condition and relative sliding condition is proposed to model the nonlinearities of vertical contraction joins, which is special to the nonlinear analysis of arch dams considering the manner of dead load type. Different from the conventional Gauss iterative method, the strategy of the alternating iterative solution of normal force and tangential force is employed. The parallelization based on overlapping domain decomposition method (ODDM) and explicit message passing using distributed memory parallel computers is employed to improve the computational efficiency. An existing high arch dam with fine finite element model is analyzed to investigate the effect of shear sliding of vertical joints on seismic response of the arch dam. The result shows that the values of maximum principal tensile stress under relative sliding condition are significantly greater than those under no-slip condition.


2019 ◽  
Vol 19 (03) ◽  
pp. 1950021 ◽  
Author(s):  
Shengshan Guo ◽  
Hui Liang ◽  
Deyu Li ◽  
Houqun Chen ◽  
Jianxin Liao

The actual dead load of an arch dam should be applied gradually through staged construction and sequenced grouting. However, the cantilever- and integral-type dead loads commonly used in the analysis of arch dams represent simplified versions of the actual loading. In this paper, these two types of dead loads, i.e. cantilever and integral types, are presented based on the Lagrange multiplier method considering the nonlinear behaviors of contraction joints. Based on the finite element method and an appropriate contact model together with artificial viscoelastic boundary conditions, a dynamic analysis model of a dam–foundation–reservoir system is established in consideration of the interactions between the arch dam and foundation, the opening and closing of contraction joints, and the radiation damping effect of the far-field boundary. Taking a 300 m high arch dam in the strong earthquake area of West China as an example, a fine mesh finite element model with a total of approximately 3.5 million degrees of freedom is established. The separate effects of the cantilever and integral dead loads on the static and dynamic responses of the dam are studied. The results demonstrate that the distribution and magnitude of the contraction joint opening width and maximum tensile stress are different under the two different dead load simplifications.


2019 ◽  
Vol 4 (3) ◽  
pp. 44 ◽  
Author(s):  
M. Hariri-Ardebili ◽  
M. Heshmati ◽  
P. Boodagh ◽  
J. Salamon

Different numerical models have been proposed for seismic analysis of concrete dams by taking into account the nonlinear behavior of concrete and joints; interaction between the dam, foundation, and reservoir; and other seismic hazard considerations. Less focus, however, has been placed on the real seismic performance of the dams and their relative correlation. This paper investigates the linear and nonlinear seismic performance of two similar high arch dams with relatively different response mechanisms. The response correlation is performed from statistical and probabilistic points of view. Similarities and differences are highlighted, and the best practice to compare the responses in a class of dams is presented. It is found that some demand parameters and seismic intensity measures can reduce the dispersion of the results and increase the correlation. In general, the dam geometry has a direct relation with the deformation and spatial distribution of potential damaged area. However, it is not related to the localized damage at the most critical location. Moreover, the real crack pattern (from nonlinear analysis) is more discrete compared to the continuous overstressed/overstrained regions (from linear analysis).


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
S. S. Wang ◽  
Y. F. Zhang ◽  
M. S. Cao ◽  
W. Xu

This study experimentally investigates the effects of contraction joints on the vibrational characteristics of high arch dams. Three scale models of the world’s second highest dam, the Xiaowan Arch Dam, are used as experimental specimens identified by zero, one, and two contraction joints. When a scale model vibrates harmonically at a specific frequency, its operating deflection shape is acquired by using a scanning laser vibrometer to scan the side surface of the model. The effects of contraction joints on the vibrational characteristics of arch dams are studied by examining the changes in operating deflection shapes. Experimental results demonstrate that (i) contraction joints can significantly affect the vibrational characteristics of arch dams, (ii) the operating deflection shape intuitively illustrates the vibrational characteristics of arch dams, and (iii) a scanning laser vibrometer has marked advantages over traditional equipment in accurately and efficiently acquiring full-field dynamic responses of a structure.


2014 ◽  
Vol 6 ◽  
pp. 587263 ◽  
Author(s):  
Mohammad Amin Hesari ◽  
Mohsen Ghaemian ◽  
Abolfazl Shamsai

Influence of joints behavior on arch dams operation during the earthquakes is investigated. The case study is the Karun-1 double curvature arch dam with the height of 200 meters. The arch dam-foundation-reservoir systems are modeled with and without joints and estimate the effects of contraction and lift joints on stresses and displacements response histories for assessing the earthquake performance. According to nolinear dynamical analysis results, inclusion of the contraction and lift joints considerably influenced the dam response.


2016 ◽  
Vol 2 (6) ◽  
pp. 295-305
Author(s):  
Mortaza Ali Ghorbani ◽  
Majid Pasbani Khiavi ◽  
Parya Ahmadi

In this paper the effect of nonlinear behaviour of concrete is investigated on seismic performance of a double curvature concrete dam. The Morrow Point concrete dam has been selected as the case study and dam-reservoir-foundation interaction considered in the model. Finite element method has been used for modelling and analysis of case study by applying the El Centro earthquake components considering nonlinear behaviour of concrete. The obtained results of nonlinear dynamic analysis illustrate the increasing of displacement of dam crest along the river and decreasing of maximum principle stresses in critical points. The results demonstrate the importance of consideration of nonlinear behaviour of material in seismic performance of arch dams to achieve the optimal design of models.


Sign in / Sign up

Export Citation Format

Share Document