Effect of Milling Time on the Structural Properties of Titanium Dioxide Nanopowder

2012 ◽  
Vol 229-231 ◽  
pp. 228-232
Author(s):  
N.N. Hafizah ◽  
M.F. Achoi ◽  
L.N. Ismail ◽  
M. Rusop

This paper report the effect of milling time on the structural properties of TiO2nanopowder prepared from sol-gel milling process. The synthesized TiO2nanopowders have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FTIR). XRD result reveals that the TiO2nanopowder in anatase phase is detected. The morphology of the TiO2nanopowder change obviously with the increase of the milling time. Further, FTIR results found the sharp peaks of Ti-O-Ti and Ti-O bonding at below 600 cm-1for all TiO2nanopowder.

2012 ◽  
Vol 626 ◽  
pp. 425-429 ◽  
Author(s):  
N.N. Hafizah ◽  
Mohamed Zahidi Musa ◽  
Mohamad Hafiz Mamat ◽  
M. Rusop

In this study, TiO2nanopowder was synthesized via a sol-gel grinding method. The effects of TiO2precursor concentration of TiO2nanopowder were investigated. The TiO2nanopowder obtained were characterized using X-ray diffraction (XRD), Raman spectroscopy and field emission scanning electron microscopy (FESEM) for their structural properties. From the calculation of the crystallite size in XRD, the size of the nanoparticles obtained is 49.55 nm at the highest TiO2precursor concentration. In contrast, at the lower concentration of 0.4 molar give the cryatallite size of 12.84 nm. Further, XRD and Raman spectrum results confirmed the TiO2nanopowder obtain composed of only anatase phase. The FESEM micrographs of TiO2nanopowder also were discussed in this paper.


Author(s):  
Mahmoud Chemingui ◽  
Chahida Mnasri ◽  
Christelle Nivot ◽  
Arnaud Tricoteaux ◽  
Yannick Lorgouilloux ◽  
...  

Abstract A new nanocrystalline Fe71B23Nb6 alloy powder was prepared by mechanical alloying. The phase transformation and morphological and microstructural properties of the as-prepared alloy were investigated by scanning electron microscopy, laser granulometry, and X-ray diffraction with respect to the milling time (0- 200 h). During the milling process, it was observed that the dissolution of Nb and B atoms into the Fe matrix formed solid solutions of Fe (Nb), Fe (B), Fe23B6, Fe2B, and Fe (Nb, B). Moreover, the insertion of B atoms into the Nb network generated the Nb (B) phase. Furthermore, the minimum crystallite size was measured as approximately 1 nanometer. In addition, the dislocation density gradually increased with the extension of the milling time, and the crystallization of the partially amorphous phase occurred after 200 h of milling.


2017 ◽  
Vol 901 ◽  
pp. 8-13 ◽  
Author(s):  
Shuluh Ashmarisya ◽  
Eko Sri Kunarti ◽  
Indriana Kartini

The Fe3O4/TiO2-Ni composites have been prepared by incorporating magnetic particles with doped photoactive titania using sono-coprecipitation and sol-gel methods. The composite was characterised by Fourier Transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy with Energy Disperse X-Ray Spectroscopy (SEM-EDX), Vibrating Sample Magnetometry (VSM) and Specular Reflectance Ultraviolet-Visible light spectroscopy (SR-UV). The results indicated that the composite of Fe3O4/TiO2-Ni had been synthesised. XRD and FTIR results showed that the composite had a good anatase phase. SEM-EDX result confirmed the atomic percentage of element presence in the synthesised product and VSM result proved that the composite has an excellent magnetisation moment of 8.76 emus. SR-UV result suggested that the composite had a good bandgap property compared to that of synthesised undoped titania.


2015 ◽  
Vol 33 (4) ◽  
pp. 714-718 ◽  
Author(s):  
Neeraj K. Mishra ◽  
Chaitnaya Kumar ◽  
Amit Kumar ◽  
Manish Kumar ◽  
Pratibha Chaudhary ◽  
...  

AbstractA nanocomposite of 0.5SnO2–0.5Al2O3 has been synthesized using a sol-gel route. Structural and optical properties of the nanocomposite have been discussed in detail. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray diffraction spectroscopy confirm the phase purity and the particle size of the 0.5SnO2–0.5Al2O3 nanocomposite (13 to 15 nm). The scanning electron microscopy also confirms the porosity in the sample, useful in sensing applications. The FT-IR analysis confirms the presence of physical interaction between SnO2 and Al2O3 due to the slight shifting and broadening of characteristic bands. The UV-Vis analysis confirms the semiconducting nature because of direct transition of electrons into the 0.5SnO2–0.5Al2O3 nanocomposites.


2008 ◽  
Vol 591-593 ◽  
pp. 147-153
Author(s):  
Gilbert Silva ◽  
Erika Coaglia Trindade Ramos ◽  
N.S. da Silva ◽  
Alfeu Saraiva Ramos

A large amount of the Ti6Si2B compound can be formed by mechanical alloying and subsequent heat treatment from the elemental Ti-22.2at%Si-11.1at%B powder mixture, but the yield powder after ball milling is reduced due to an excessive agglomeration of ductile particles on the balls and vial surfaces. This work reports on the structural evaluation of Ti-22.2at%Si-11.1at%B powders milled with PCA addition, varying its amount between 1 and 2 wt-%. The milling process was carried out in a planetary ball mill under argon atmosphere, and the milled powders were then heated at 1200oC for 1h under Ar atmosphere in order to obtain equilibrium structures. Samples were characterized by X-ray diffraction, scanning electron microscopy, and thermal analysis. Results revealed that the PCA addition reduced the excessive agglomeration during the ball milling of Ti-22.2at-%Si-11.1at-%B powders. After heating at 1200oC for 1h, the Ti5Si3, Ti3O and/or Ti2C phases were preferentially formed in Ti-22.2at%Si-11.1at%B powders milled with PCA addition, and the Ti6Si2B formation was inhibited.


2012 ◽  
Vol 476-478 ◽  
pp. 2059-2062
Author(s):  
Chen Wang ◽  
Ya Dong Li ◽  
Gu Qiao Ding

Tributyl borate was first adopted for the introduction of boron in the preparation of bioactive borosilicate xerogel by sol-gel method. The xerogel reacted continuously in 0.25M K2HPO4 solution with a starting pH value of 7.0 at 37 °C for 1day. The structural, morphologies and compositional changes resulting from the conversion were characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The results indicated that speed of formation of HA was cut way back on the time with the addition of boron and the induction period for the HA nucleation on the surface of the borosilicate xerogel was short than 1 days. The conversion mechanism of the borosilicate xerogels to hydroxyapaptite was also discussed.


2012 ◽  
Vol 496 ◽  
pp. 379-382
Author(s):  
Rui Song Yang ◽  
Ming Tian Li ◽  
Chun Hai Liu ◽  
Xue Jun Cui ◽  
Yong Zhong Jin

The Cu0.81Ni0.19 has been synthesized directly from elemental powder of nickel and copper by mechanical alloying. The alloyed Cu0.81Ni0.19 alloy powders are prepared by milling of 8h. The grain size calculated by Scherrer equation of the NiCu alloy decreased with the increasing of milling time. The end-product was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM)


2021 ◽  
Vol 12 (5) ◽  
pp. 6580-6588

Dicalcium phosphate dihydrate (DCPD) nanoparticles, also known as brushite, are considered an important bioceramic compound. In this study, brushite was prepared from Moroccan phosphogypsum (PG) using a new sol-gel method. A two-step technique undergoes the synthesis of brushite, the preparation of anhydrite from PG followed by adding phosphoric acid in the presence of sodium hydroxide. The morphology, the chemical composition, and the crystallites size were obtained using Scanning Electron Microscopy (SEM-EDAX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR), respectively. According to the Debye-Scherrer equation, these characterization methods indicated that the synthesized brushite was highly pure according to the Ca/P ratio of 1.14 and an average crystallites size estimated at 66 nm. These results proved that the brushite was successfully synthesized from Moroccan phosphogypsum.


2010 ◽  
Vol 152-153 ◽  
pp. 1683-1686
Author(s):  
Qing Wang ◽  
Ya Hui Zhang

Biomorphic silicon carbide (bioSiC) was prepared by high temperature pyrolysis and sol-gel and carbothermal reduction processing at 1600 oC. The morphology and microstructure of carbon-silica composites and purified bioSiC samples were characterized by scanning electron microscopy. The phase composition of the resulting sample was analyzed by X-ray diffraction. The results suggest that the bioSiC mainly consists of cubic ß-SiC, and principally replicates the shape and microstructure of the carbon template.


2015 ◽  
Vol 1088 ◽  
pp. 81-85 ◽  
Author(s):  
T.N. Myasoedova ◽  
Victor V. Petrov ◽  
Nina K. Plugotarenko ◽  
Dmitriy V. Sergeenko ◽  
Galina Yalovega ◽  
...  

Thin SiO2ZrO2films were prepared, up to 0.2 μm thick, by means of the sol–gel technology and characterized by a Scanning electron microscopy and X-ray diffraction. It is shown the presence of monoclinic, cubic and tetragonal phases of ZrO2in the SiO2matrix. The crystallites sizes depend on the annealing temperature of the film and amount to 35 and 56 nm for the films annealed at 773 and 973 K, respectively. The films resistance is rather sensitive to the presence of NO2and O3impurity in air at lower operating temperatures in the range of 30-60°C.


Sign in / Sign up

Export Citation Format

Share Document