Effect of Silica Fume on Mechanical Properties and Carbonation Resistance of Concrete

2012 ◽  
Vol 238 ◽  
pp. 161-164 ◽  
Author(s):  
Qing Long Wang ◽  
Jun Chao Bao

A designed experimental study has been conducted to investigate the effect of silica fume on mechanical properties and carbonation resistance of concrete, a large number of experiments have been carried out in this study. The results indicate that the addition of silica fume has improved the compression strength and elastic modulus of concrete. A considerable increase for the compression strength and elastic modulus of the concrete was observed by increasing the dosage of silica fume. Besides, the addition of silica fume can improve the carbonation resistance of the concrete composite evidently, and the carbonation resistance is becoming better and better as the silica fume content is increasing gradually.

Author(s):  
Sivamani Jagan ◽  
Thurvas Renganathan Neelakantan ◽  
Palaniraj Saravanakumar

Extensive studies have been performed on the mechanical and durability properties of the concrete prepared with recycled coarse aggregates (RCA), however, only modest consideration has been given to the studies on the behaviour of RAC prepared by alternative mixing approach techniques. This study presents the mechanical properties of the recycled aggregate concrete (RAC) with different percentages of RCA prepared by normal mixing approach (NMA), two-stage mixing approach (TSMA) and sand enveloped mixing approach (SEMA) techniques. The manufactured concrete mixtures were tested for compression, tension, flexure and elastic modulus at 7, 28 and 90 days. The results indicate that the mechanical properties of the RAC (with 100% of RCA) prepared through TSMA and SEMA were improved by 9.36 and 12.14% at 28 days. Perhaps, prolonged curing to TSMA and SEMA mixtures improved the mechanical properties of the RAC that is nearly equal to normal aggregate concrete (NAC) prepared by NMA.


2020 ◽  
pp. 009524431989728
Author(s):  
Sajjad Daneshpayeh ◽  
Faramarz Ashenai Ghasemi ◽  
Shahnoosh Masoumi ◽  
Meysam Nouri Niyaraki

The goal of the present study is to investigate and predict the mechanical properties, including impact strength, elastic modulus, and elongation-at-break of quaternary nanocomposites based on polypropylene (PP)/ethylene–propylene–diene monomer (EPDM)/glass fiber (GL)/graphene nanosheets (GPn) by fuzzy logic. Three parameters in different levels, including EPDM, GL, and GPn, were chosen for combination with a PP matrix. The fuzzy logic surfaces showed that the EPDM rubber and GPn had the main role in the elastic modulus of nanocomposites. The high levels of EPDM content resulted in a considerable increase in impact strength and, generally, the presence of EPDM had no effect on elongation-at-break.


Author(s):  
Vijaya Kumar Y.M ◽  
Seema B S

Carbon dioxide (CO2) is the reason of increasing the global warming resulting from human industrial activities, to reduce these emissions of CO2 there is a necessity for sequestration of CO2 into stable forms. The paper summarizes the mechanical properties of concrete when cured on CO2 that is by using CO2 chamber. The research includes designing a concrete mix of M25 and M30 grade as per IS 10262:2009. The experimental study on water cured and CO2 specimens for compression strength were carried out. The results show that for M25 and M30 grade of concrete has achieved increasing value as comparing with 7days of water curing and the duration of 4hour CO2 curing. For M25 grade of concrete has achieved 70% of compression strength and M30 grade of concrete has achieved 65% of compression strength in the duration of 4hours of CO2 cured specimens when compared to 28days of water cured specimens.


2020 ◽  
Vol 12 (3) ◽  
pp. 1029 ◽  
Author(s):  
Liang Chen ◽  
Peng Wu ◽  
Yanlong Chen ◽  
Wei Zhang

The effect of freeze-thaw on the physical-mechanical properties and fracture behavior of rock under combined compression and shear loading was crucial for revealing the instability mechanism and optimizing the structure design of rock engineering in cold regions. However, there were few reports on the failure behavior of rock treated by freeze-thaw under combined compression and shear loading due to the lack of test equipment. In this work, a novel combined compression and shear test (C-CAST) system was introduced to carry out a series of uniaxial compression tests on saturated yellow sandstone under various inclination angles (θ = 0°, 5°, 10°, and 15°) and the number of freeze-thaw cycles (N = 0, 20, 40, and 60). The test results showed that the P-wave velocity dramatically decreased, while the rock quality and porosity increased gradually as N increased; the peak compression strength and elastic modulus obviously decreased with the increasing θ and N, while the peak shear stress increased gradually with the increasing θ and decreased with the increase of N, indicating that the shear stress component can accelerate the crack propagation and reduce its resistance to deformation. The acoustic emission (AE) results revealed that the change of crack initiation (CI) stress and crack damage (CD) stress with the θ and N had a similar trend as that of the peak compression strength and elastic modulus. Particularly, the CI and CD thresholds at 60 cycles were only 81.31% and 84.47% of that at 0° cycle and indicated a serious freeze-thaw damage phenomenon, which was consistent with the results of scanning electron microscopy (SEM) with the appearance of some large-size damage cracks. The fracture mode of sandstone was dependent on the inclination angle. The failure mode developed from both the tensile mode (0°) and combined tensile-shear mode (5°) to a pure shear failure (10°–15°) with the increasing inclination angle. Meanwhile, the freeze-thaw cycle only had an obvious effect on the failure mode of the specimen at a 5° inclination. Finally, a novel multivariate regression analysis method was used to predict the peak compression strength and elastic modulus based on the initial strength parameters (θ = 0°, N = 0). The study results can provide an important reference for the engineering design of rock subjected to a complex stress environment in cold regions.


2019 ◽  
Vol 275 ◽  
pp. 01026
Author(s):  
Chenjie Zhao ◽  
Xiaohong Xiong ◽  
Zhenhua Xiong ◽  
Kangwen Wu ◽  
Zhen Cao ◽  
...  

Six specimens were made and tested to study the mechanical properties of LBL beams. The mean ultimate loading value is 68.39 MPa with a standard deviation of 6.37 MPa, giving a characteristic strength (expected to be exceeded by 95% of specimens) of 57.91 MPa, and the mean ultimate deflection is 53.3 mm with a standard deviation of 5.5 mm, giving the characteristic elastic modulus of 44.3 mm. The mean ultimate bending moment is 20.18 kN.m with a standard deviation of 1.88 kN.m, giving the characteristic elastic modulus of 17.08 kN.m. The mean elastic modulus is 9688 MPa with a standard deviation of 1765 MPa, giving the characteristic elastic modulus of 6785 MPa, and the mean modulus of rupture is 93.3 MPa with a standard deviation of 8.6 MPa, giving the characteristic elastic modulus of 79.2 MPa. The strain across the cross-section for all LBL beams is basically linear throughout the loading process, following standard beam theory.


2014 ◽  
Vol 543-547 ◽  
pp. 4031-4034 ◽  
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

For researching the way of modified and mechanism of action of the Crumb Rubber Concrete,we had researched the change regulation of Mechanical Properties and compressive strengthsplitting tensile strengthflexural strength of the Crumb Rubber Concrete Modified By Silica Fume with various quantity of rubber,in the condition of 10% silica fume.the experimental result make it clear that silica fume is propitious to heighten compressive strengthsplitting tensile strengthflexural strength of the Crumb Rubber Concrete,and compressive strengthsplitting tensile strengthflexural strength would be cut down when mix the Crumb rubber in Concrete.


Sign in / Sign up

Export Citation Format

Share Document